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ABSTRACT. The existence of a continuous Z,-map from a free m-dimensional

Z,-simplicial complex E to the (m — 1)-dimensional antipodal sphere sm-1
is characterized by means of an enumerative combinatorial criterion involving a
coloring of the vertices of E . The Borsuk-Ulam theorem, 1933, and the com-
binatorial lemmas of Tucker, 1945, and Ky Fan, 1952, are easy consequences
of this result for the case |E|=S".

1. INTRODUCTION

Let E be a free Z,-simplicial complex equipped with a Tucker-Ky Fan
coloring, i.e. a coloring of its vertices by {+1, £2, ...} which assigns antipodal
(resp., nonantipodal) integers to antipodal (resp., contiguous) vertices of £. An
oriented m-simplex of such an E is called alternating iff its coloring is of the
type
(1.1) [+ny, =ny, ..., (=1)"n,1, O0<ny<n <---<n,.

For the case when E isa Z,-triangulation of the antipodal m-sphere S™, Ky
Fan [4] showed that £ must have an odd number of alternating m-simplices.
In particular, for such an E, a coloring of the above type must use at least
m + 1 pairs of integers. This earlier result of Tucker [12] in turn implies the
Borsuk-Ulam theorem [1], viz., that there does not exist a continuous Z,-map
from S™ to S™'.

The object of this note is to establish the following.

1.2. Generalized Tucker-Ky Fan theorem. Let E be any free m-dimensional
Z,-simplicial complex equipped with a Tucker-Ky Fan coloring. Then, there
exists a continuous Z,-map E — S™Y iff the algebraical number of alternating
m-simplices contained in any integral Z,-chain of E is divisible by 2k k>1,
whenever the boundary of the chain is divisible by 2k,

Here, an integral Z,-chain c¢ means an integral linear combination
Eae £C,0, each simplex ¢ being oriented with —o¢ interpreted as the oppo-
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sitely oriented simplex; further ¢ is required to be symmetric (resp., antisym-
metric) in even (resp., odd) dimensions with respect to the Z,-action of E . The
oriented simplex o (resp., —o) is said to be contained c, (resp., —c,) times
in the chain c¢. Finally, as usual, the boundary dc =) c 00, the boundary
of an oriented simplex being defined by

Ovg, vy ooy Ul = D (D), oon, 0y e, 0,10

0<i<m

where ~ denotes omission.

Consider the case when FE is a minimal (w.r.t. C) m-dimensional pseu-
domanifold, i.e. each (m — 1)-simplex is incident to two m-simplices. Now
the boundary of an m-chain is divisible by 2k , k > 1, only if, mod 2k , it
is a multiple of a sum of all the m-simplices Y +c™ . Further, note that if
S +0™ issucha Z,-chain, then its boundary is divisible by 2, but is divisible
by a higher power of 2 only if it is zero, and so only if E is Z,-orientable, i.e.
orientable with orientation-cycle symmetric (resp., antisymmetric) for m even
(resp., odd). So we have the following.

1.3. Corollary for Z,-pseudomanifolds. Let E be a minimal m-dimensional
pseudomanifold which is equipped with a free Z,-action and a Tucker-Ky Fan
coloring. When E is not Z,-orientable (resp., Z,-orientable) then there exists
a continuous Z,-map E — sm! iff the number (resp., the algebraic number
w.r.t. an orientation) of alternating m-simplices is even (resp., zero).

1.4. Remarks. (a) Note that S™ is not Z,-orientable. So, the Borsuk-Ulam
theorem, and the “if” part of Corollary 1.3, imply the aforementioned results
by Ky Fan and Tucker. On the other hand, the octahedral m-sphere, E =
{£1}-{£2}.----{£(m+1)}—i.e. the (m+1)-fold join of 2 points—contains only
one alternating m-simplex, [+1, —2, +3, ...], under the identity Tucker-Ky
Fan coloring. So the “only if” part of 1.3 also yields the Borsuk—-Ulam theorem.

(b) An octahedral sphere is a particular case of a more general construction. If
the vertices of a simplicial complex K arenamed 1, 2, ..., then its deleted join
K, (i.e. the simplicial complex consisting of all simplices of the type cU(-0),
oN6 = ¢, and equipped with the free Z,-action g U(—6) — 8 U(—0)) gets the
identity Tucker-Ky Fan coloring and 1.2 and 1.3 give combinatorial criteria for
the existence of a continuous Z,-map from K, to smh,

(c) It is easily checked that out of the deleted joins (a,' ), » of the t-skeleta
at’ of i-simplices o', the only ones which are pseudomanifolds are the octahe-

dral t-spheres (a,')* , which have just one alternating ¢-simplex, and the Flores’
(2t+1)-spheres (02”2)* , which have 2¢+3 alternating (2¢+ 1)-simplices. (The

t
fact that (¢7'*%), is Z,-homeomorphic to $**' is not obvious and is due to
Flores [3].)

(d) For K to embed in R”™" it is necessary that there be a continuous Z,-
map from K, to st (Much less obvious is the fact, due to C. Weber, that
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even the converse is true if 2m — 5 > 3-dimK.) So, by using (c) and 1.3, it
follows that the z-skeleton of a (2¢+2)-simplex—or, for that matter, the join of
any number of such complexes—does not embed in a Euclidean space of twice
its dimension. This result is due to van Kampen [14] and Flores [3], and the
proof just given is close in spirit to the original one of van Kampen. (Flores used
the Borsuk-Ulam theorem and the fact that the deleted joins of such complexes
are spheres. See also [9] where it is shown that such n-complexes are the only
ones whose deleted joins are (27 + 1)-pseudomanifolds.)

Our proof of Theorem 1.2 is essentially an exposition of known facts:

Following Shapiro [10] and Wu [16]—who consider “deleted products” only
—we will see in §2 that the mth characteristic or Smith class of E™ can be
defined in terms of its alternating m-simplices. Using this the enumerative
combinatorial criterion of 1.2 turns out to be equivalent to saying that this class
is zero. To complete the proof we now recall (this fact is probably due to H.
Hopf and was well known by 1945) why the vanishing of this class is equivalent
to the existence of a continuous Z,-map E™ — smt.

2. CHARACTERISTIC CLASSES
The underlying ring of coefficients of our (co)chains will always be Iy, the

ring of integers mod 2k , 1 <k < oo (note that I(oo) = I, the ring of inte-
gers). We will consider two actions of the 2-letter group Z, = {Id, v} on this
ring: the trivial or symmetric action v(x) = +Xx, and the antisymmetric action
v(x) = —x. A (co)chain of E will be called equivariant (i.e. symmetric or
antisymmetric) if it is preserved by the action obtained by combining + with
the given Z, action of E.

We note that the notion of a Tucker-Ky Fan coloring of E is obviously
equivalent to that of a simplicial Z,-map ¢ from E to the infinite dimensional,
or universal octahedral sphere U = {1} - {£2}---- (ie. the infinite join
Z,-Z,---- of the group under consideration). The least number of pairs of
integers required to color E will be called its combinatorial genus c- g - (E).
Clearly every free Z,-complex E does have a Tucker-Ky Fan coloring and
¢c-g-(FE)< N, where N is the number of pairs of vertices of E .

The equivariant cohomology H;(U ) of the universal octahedral sphere is
also called the cohomology of the group Z, and denoted by H; (Z,) . Next,
note that any two Tucker-Ky Fan colorings ¢,, ¢,: E — U are Z,-homotopic:
to see this translate ¢, to ¢ so that ¢|, ¢, employ disjoint sets of col-
ors, and then join (p'l to ¢, linearly. So the (characteristic) homomorphism
¢": H,(Z,) — H, (E) defined by means of a Tucker-Ky Fan coloring ¢ of E
is in fact independent of ¢ . The equivariant cohomology classes of E lying in
its image are called the characteristic classes of E .

In particular, for i even (resp., odd) let a, denote the symmetric (resp.,
antisymmetric) cochain of U which has the values 1,1 (resp., 1, —1) on
alternating i-simplices and their antipodes, and the value 0 on all other sim-
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plices. From 2.1 below it follows that a; is in fact a cocycle, i.e. da; = 0; thus
we have the characteristic classes [q)*ai] € Hj’:(E ; I(k)) , 1 <k<oo.

2.1. Coboundary formula. Let a, denote the cochain of U which takes the
value 1 on alternating simplices and the value O on all other simplices. Then
d@) = ()" a,, forall i>0.
Proof. Alternating (i + 1)-simplices—see (1.1)—or their antipodes do occur in
da; because they are incident to precisely one alternating i-simplex: the one
obtained by omitting the last or the first vertex, respectively. The only other
(i + 1)-simplices which could have occurred are those whose vertices, when
totally ordered by absolute value, alternate in sign with just one exception: but
now one has two alternating i-faces occurring with opposite incidence numbers.
Thus (p*a,. +1 1s the coboundary of an ordinary cochain, however it need not
be the coboundary of an equivariant cochain. In fact

2.2. The combinatorial criterion given in 1.2 is equivalent to saying that the
characteristic class [¢p”a, ] € H;" (E; I(k)) is zero forall 1 <k < oo.

Proof. For any equivariant cochain a, and chain ¢ = }  _.c o, define

(@,c) = sk 1z, c,a(o), where in the summation only one representative is
chosen from each orbit {0, v(og)}. Note that ((o*am , ¢) equals the algebraical
number of alternating m-simplices contained in c. Also, that the I( k)-modules
of equivariant cochains and chains are dual to each other under this unimodu-
lar bilinear form ( , ), and one has Stokes formula (da, c) = (a, dc). So if
¢*am is the coboundary of an equivariant cochain, and c¢ is any equivariant
cycle mod 2%, then one must have (¢*a,,c)=0 mod 2k

Conversely, if ¢*am is not in ImdJ, then let r be the smallest positive
integer such that r(o*am € Imé . Note that r divides 2° ,le r= 2" for some
1 <!/ <k < oo. Let ¢ be an equivariant chain for which the corresponding I(k)-

valued linear function { , ¢) is zero on ImdJ and takes the (nonzero mod 2")
value 27! on (o*am. This ¢ isa mod 2 cycle because (a, dc) € I(k) is zero
for all a.

We now check the “only if” part of 1.2. The least ¢ such that there exists
a continuous Z,-map from E into S will be called the topological genus
t-g-(E) of E;notethat t-g-(E)<c-g-(E).

23. T-g-(E) < dim(E) + 1 and all characteristic classes of E vanish in
dimensions > t-g-(E).

Proof. Let E' denote the Z,-simplicial complex whose simplices are chains
(under C) of nonempty simplices of E, i.e. the simplicial complex obtained
by performing a barycentric subdivision of E. One has t-g-(E)=t-g-(E') <
c-g-(E'Yy =dim(E) + 1, because E’ has Tucker-Ky Fan colorings using just
dim(E) + 1 colors, viz., those in which i-dimensional barycenters are colored
+(i+1).
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Further, simplicial approximation shows that there exists a continuous Z,-
map E Lot = {£1}:---- {#t} iff there exists a simplicial Z,-map f from

E"" | a sufficiently fine barycentric subdivision of E, into {£1}-----{£t} C
U. Slnce f*a = 0 for all cochains a of U of dimension > ¢, it would
suffice thus to check that the characteristic homomorphlsms of EV ) and E are
related to each other by the isomorphism i(E(')) H i(E ) induced by
chain subdivision. This is indeed so because the inverse isomorphism can be
induced from a Z,-simplicial map E ) _, E, viz., one which maps each vertex
of E to some vertex of the open simplex of E containing it.

Since integral coefficients are needed for the “if” part of 1.2 we first verify
the following.

2.4. The combinatorial criterion given in 1.2 is equivalent to saying that the
integral characteristic class [¢9”a, ] € H. ;"(E ; I) is zero.

Proof. We note first that the characteristic class is of order 2: this follows e.g.
from the coboundary formula 2.1 which shows that 2a,, is the coboundary of
the equ1var1ant cochain u,_, = (- n" (@, + (= H"v (am 1)) . Now suppose
that ¢* a,, is an equivariant coboundary mod 2* ,ie. o" a, =ov+ 2kw for
some equivariant cochains v and w.So ow=0 and 2k+1w is the coboundary
of the equivariant cochain ¢"u —2v. If k is so large that H 4 (E; I) has
no element of order k1 , we must have w = dx for some equivariant x. So
0" a, =d(v +2 x) and [¢ a,l € H (E; I) is zero. Since, conversely, 0" a,

m—1

can be an equivariant coboundary only if it is so mod 2K for all 1 <k < o0,
the result follows by using 2.2.

So the next result completes the proof of Theorem 1.2.

2.5. If the highest-dimensional integral characteristic class [¢"a,,) € H] (E "I
is zero, then there exists a continuous Z,-map f: E™ — sm™!

Proof. We equip R™ with the antipodal Z,-action v(x) = —x (having the
unique fixed point O) and use the notation [f] for the point (¢, £ )
of the moment curve of R™ . Let u,: U — R” denote the linear Z -map which
images the vertices +1, +2, ..., of the universal octahedral sphere ‘U to the
points +[1], £[2], ..., of R". Note thatu,, is 1 —1 on simplicies g of U
of dimensions < m. Further, one can verify that the image u, (o) of such a
simplex contains O € R” iff ¢ or v(og) is an alternating m-simplex of U .
The composition u, ¢ provides us with a continuous Z,-map from the
(m — 1)-skelet0n E™ ' to R™\{O}, and we can replace this by a homotopic
Z,map g: E" — S™~!. The cochain ¢*a, takes the values 1 and (—1)"
on alternating m-simplices of E and their antipodes, and the value 0 on all
other simplices. Thus, with an appropriate orientation of S", ¢'a (a )
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commdes with the degree of the restricted map g|dc™: 6™ — S™ ! for all
" e€E.

The required Z,-map can now be found by the following well-known proce-
dure. Choose an equivariant (m—1)-cochain u such that du = ¢*am . Replace
g by a continuous Z,-map f: E™™' — §™!' which is equal to g on E" 2,
and differs from g, on each "' € E, by the degree amount u(ﬁm_l). By
virtue of du = ¢ a,, each restriction f|dc™, dc™ € E, has degree 0. So we
can extend this map to the required continuous Z,-map f: E” — §"7'.

3. NOTEs

3.1. Deleted joins are maximal free Z ,-simplicial complexes in the sense that

a 1 — 1 Tucker-Ky Fan coloring ¢ of any E exhibits it as a Z ,-subcomplex
of K, , where K = ?E, the full subcomplex of E determined by the positive
vertices. Furthermore 1f E is a deleted join, then one can verify that *E is
independent of ¢ up to simplicial isomorphism. This reconstruction property is
not shared by the more common “deleted products” K, (the sub cell complex
of K x K consisting of all cells 6 x 0, 0N = ¢) eg. a and a _, have
the same deleted product. However an affirmative solution of the well known
graph reconstruction problem of Ulam [13] (p. 29), would show that nonisomor-
phic graphs having more than three vertices cannot have Z,-isomorphic deleted
products.

Regarding deleted joins note also that if K has N vertices, then K, must
have combinatorial genus > N/3: a lesser number of colcrs would result in
some three vertices of K, getting the same color and the coloring would be bad
on the hexagon (ag ). € K, determined by these vertices and their antipodes.

3.2. The proof of 2.5 amounted to checking that ¢*a is the obstruction—see
[11]—experienced in trying to extend a continuous Z ,-map g:E m=l_, gm-1
to all of E™. For E = K, this is equivalent to the deﬁnmon of van Kampen
[14], who considered cocycles which count the algebraical number of isolated
self-intersections of a general position map 4: K — R™"! e.g., (see [10]) the
linear map A(i) = [i] yields the alternating cocycle ¢*am

The universal space definitions of characteristic classes (see [11] and [5])
came later. Still another approach (see [17]) is to note that the equivariant
cochain subcomplexes C (E) of C*(E) fit into the two short exact sequences

0— Ci(E)— C*(E) XF~, ¢* “(E) -0,
and so give rise to the following two long exact sequences
~—>H'i(E)—>H'(E)—>H' (E) = fl(E)

of Richardson and Smith [6]. By repeatedly applying the connecting homomor-
phisms J, to the unit class [1] € H° . (E) one obtains the Smith classes of E .
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The coboundary formula 2.1 shows that these coincide up to sign with the al-
ternating classes [¢*am] . With mod 2 coefficients there is only one long exact
sequence and its exactness shows immediately (cf. [15]) that if E is homolog-
ically trivial in dimensions less than m, then l¢*a,] is nonzero. For E =K,
this approach relates these Smith, or Stiefel-Whitney, classes to the cohomology
operations of K.

We will show elsewhere (see also [2, 7, 8]) that one can obtain a similar
combinatorial understanding of other characteristic classes by generalizing 1.2
to free actions of finite groups G other than Z, .
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