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TVERBERG PARTITIONS AND BORSUK-ULAM
THEOREMS

K.S. Sarkaria

An N-dimensional real representation E of a finite group
G is said to have the “Borsuk-Ulam Property” if any contin-
uous G-map from the (N + 1)-fold join of G (an N-complex
equipped with the diagonal G-action) to E has a zero. This
happens iff the “Van Kampen characteristic class” of E is
nonzero, so using standard computations one can explicitly
characterize representations having the B-U property. As
an application we obtain the “continuous” Tverberg theo-
rem for all prime powers q, i.e., that some q disjoint faces
of a (q − 1)(d + 1)-dimensional simplex must intersect under
any continuous map from it into affine d-space. The “classi-
cal” Tverberg, which makes the same assertion for all linear
maps, but for all q, is explained in our set-up by the fact that
any representation E has the analogously defined “linear B-U
property” iff it does not contain the trivial representation.

1. Introduction.

This paper is essentially an analysis of a method which I had used in a man-
uscript [19] circulated in 1988-89. Some of its results have in the meantime
been independently obtained by others, and it is possible that the newer
methods of [21] might lead to better results. Nevertheless, it does give a
complete account of one aspect of “the method of deleted joins”: it delin-
eates clearly its power and limitations, as far as the two topics mentioned in
the title are concerned, if one uses only finite groups, as against [21], where
we use a continuous group action.

In 1966 Tverberg [24] showed that any cardinality (q−1)(d+1)+1 subset
of a real affine d-dimensional space can be partitioned into q disjoint subsets
whose convex hulls have a nonempty intersection; a much easier proof is
given in [20]. There is a “continuous” analogue which asks more: given any
continuous map f from a (q−1)(d+1)-simplex into d-space, can one always
find q disjoint faces σ1, . . . , σq of this simplex such that f(σ1)∩ . . .∩f(σq) is
nonempty? For q prime this was established by Bárány-Shlosman-Szücs [4].
In [18] I gave an easy proof of this result using a deleted Z/q-join of the N -
simplex, N = (q−1)(d+1), viz. the (N+1)-fold join EN (Z/q) = Z/q·. . .·Z/q.
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In [19] I attempted to generalize this argument to all q by using, in addition,
the “Van Kampen obstruction” class e.

The importance of this characteristic class e(E) ∈ HN (G, Ẑ), n = dim(E),
which we define in 2.6 for any real representation E of any finite group G,
stems from the fact — see Theorem 1, 2.6.2 — that it is nonzero iff E has
the Borsuk-Ulam property, i.e., any continuous G-map EN (G) → E has
a zero. Using the argument of [18], the “continuous” Tverberg holds if one
has an order q group G for which L

⊥(G), the (d + 1)-fold direct sum of
the non-trivial part of the regular representation, has this B-U property.
Our Theorem 2, 2.6.3 gives a complete characterization of complex Z/q-
representations having the B-U property. In particular, it shows that the
representations L

⊥(Z/q) all have this property iff q is prime, which gives of
course the B-S-S theorem, and shows also that to go beyond one needs to
look at finite non-cyclic groups. Amusingly, the original Tverberg theorem
also fits neatly into this B-U framework: we check that the argument of [20]
or [10] is really just the same, except that one now invokes a linear analogue
2.4 of the B-U property which holds for all q. The next Theorem 3, 2.8.1 gen-
eralizes the “continuous” Tverberg to all prime powers q = pk and has also
been proved independently by Ozaydin [16] and Volovikov [25]. It follows at
once from Theorem 4, 2.8.2 which says that a representation of (Z/p)k has
the B-U property iff it does not contain the trivial representation. Finally
in 2.9, we embed the Z/q-action of L

⊥(Z/q) in an action of the symmetric
group Σq, and show — see Theorem 5, 2.9.3 — that the characteristic class
of this Σq representation is zero iff q is not a prime power. To go beyond
prime powers it thus seems necessary to use continuous group actions.

The exposition below is self-contained except that we refer to the litera-
ture for standard facts regarding Chern classes of finite group actions. For
more background material see also Mark de Longueville’s notes [13] of a
seminar based on this paper.

2. Borsuk-Ulam representations.

The main character of our story is a realN -dimensional group representation
E which does not contain the trivial representation, mostly E = L

⊥ (defined
in 2.2 below) which has dimension N = (q − 1)(d+ 1).

2.1. By the q-th deleted join [17] K ∗ · · · ∗ K of a simplicial complex K
one understands the subcomplex of its q-fold join K · . . . ·K consisting of all
simplices (σ1, . . . , σq) with σi ∩ σj = ∅ ∀ i 	= j. Mostly K = [N ] = all faces
of the N -simplex {e1, . . . , eN+1}. Let Q be a cardinality q set. Denoting the
q copies of each eα by geα, g ∈ Q, [N ] · . . . · [N ] consists of all subsets of the
cardinality q(N+1) set {geα : g ∈ Q, 1 ≤ α ≤ N+1}, and [N ]∗· · ·∗[N ] of all
faces of all N -simplices of the type {g1e1, . . . , gN+1eN+1}. So [N ] ∗ · · · ∗ [N ]
(q times) identifies with EN (Q) = Q · . . . ·Q (N + 1 times).
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Frequently we’ll equip the set Q with a group structure G, and then let G
act simplicially on [N ] · . . . · [N ] by h • (geα) = (hg)eα. Note that this action
preserves, and is free on, the subcomplex [N ] ∗ · · · ∗ [N ]. We recall that such
free G-complexes EN (G) = G · . . . · G (N + 1 times), EG = ∪NEN (G), go
into Milnor’s definition [14] of a classifying space BG of G : BG = EG/G =
∪N (BNG), where BNG = EN (G)/G.

2.2. We’ll identify our affine d-space A
d with the hyperplane Σkxk = 1 of

R
d+1, and the q-fold product R

d+1 × · · · × R
d+1 with the vector space L of

all real (d+1)× q matrices, with L
⊥ denoting the (q−1)(d+1) dimensional

subspace consisting of all matrices having row sums zero. Note that L
⊥ is

the orthogonal complement of the diagonal subspace ∆ of matrices having
all columns equal to each other.

We’ll index the columns of our matrices by the cardinality q set Q. Fre-
quently Q will be equipped with a group structure G, and then we’ll permute
the columns by left translations. The resulting representations of G will be
denoted L(G) and L

⊥(G). Note that L(G) = R
d+1[G], the (d + 1)-fold

direct sum of the regular representation R[G] provided by each row, and
that L

⊥(G) contains no trivial representation. So the action of G on the
unit sphere S(L⊥) is always without fixed points. When d+ 1 is even we’ll
identify L(G) with the representation C

(d+1)/2[G] provided by all d+1
2 × q

complex matrices by taking real and imaginary parts of each row, and we’ll
equip L(G) with the orientation prescribed by this complex structure.

For the case G = Z/q note that the action is free on S(L⊥) iff q is prime,
and that the action preserves the orientation of L

⊥(Z/q) iff (q− 1)(d+1) is
even.

2.3. Proof of theorems of Tverberg and Bárány-Shlosman-Szücs.
Let sα, 1 ≤ α ≤ N+1, N = (q−1)(d+1), be the points of the given set S ⊂
A

d and consider the linear map K = [N ]
f→ A

d such that eα �→ sα ∀α. More

generally consider any continuous map [N ]
f→ A

d. We want to show that
there exist q disjoint faces σ1 . . . , σq of K such that f(σ1)∩ . . .∩ f(σq) 	= ∅.
Equivalently, if we compose the q-fold join K ∗ · · · ∗ K → A

d · . . . · A
d ⊂

R
d+1 × · · · × R

d+1 = L of f with the orthogonal projection L → L
⊥ to get

a map
s : [N ] ∗ · · · ∗ [N ] → L

⊥,
then what we have to show is that 0 ∈ Im (s).

For this, note first that s commutes with the group actions, defined above.
Now the linear case follows by applying the “linear Borsuk-Ulam” theorem
2.4. Likewise, for q prime, we see that the Z/q-map s associated to a con-
tinuous f must have a zero, by using the generalization 2.5 of the usual
continuous Borsuk-Ulam. �



234 K.S. SARKARIA

2.4. “Linear Borsuk-Ulam”. If E does not contain the trivial represen-
tation, then any linear G-map s : EN (G) → E has a zero.

Note that the condition on E is obviously necessary.

Proof. This is a particular case of Bárány [3] the argument being as follows.
If conv 〈s(gαeα) : gα ∈ G, 1 ≤ α ≤ N +1〉 is at a distance δ > 0 from 0 ∈ E,
then its nearest point P is contained in the hyperplane H normal to 0P and
out of the points s(gαeα) we can choose ≤ N which all lie on H and are such
that P is in their convex hull. The remaining points will be either on H or
in the component of E\H not containing {0}. Let s(gβeβ) be any of these
points. Since s commutes with the G actions, and E does not contain the
trivial representation, we have Σgs(g eβ) = Σgg(s eβ) = 0. So some s(g eβ)
must be in the component of E\H which contains {0}. Replacing gβ by such
a g we can make δ still smaller. So the minimum δ must be zero. �

E

s(gβeβ)

P

δ

0

•
•

•

Figure 1.

2.5. Liulevicius [12], Dold [8]. If G 	= 1 acts freely on S(E) then E has the
Borsuk-Ulam property, i.e., every continuous G-map s : EN (G) → E has a
zero.

This generalizes Borsuk’s theorem [6] which says (because EN (Z/2) =
octahedral N -sphere equipped with the antipodal Z/2 action) that the rep-
resentation of Z/2 in R

N given by x �→ −x has the B-U property.

Proof. It suffices to prove the result for complex representations, for if there
were a G-map EN (G) → S(E), then its 2-fold join would provide a G-map
E2N (G) ⊂ E2N+1(G) → S(E) · S(E) = S(E ⊕ E ∼= E ⊗ C) with G acting
freely on S(E ⊗ C).
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Also it suffices to do just the prime cyclic case: for each G contains a
subgroup H ∼= Z/p, and this case then gives us at least |G| ÷ p zeros, one in
each EN (Hg) = (Hg)·. . .·(Hg). So the result follows from 2.6.3 which in fact
gives for all q an explicit characterization of complex Z/q representations
having the Borsuk-Ulam property. �

2.6. Characteristic classes of representations. Recall that the coho-
mology of G ∼= π1(BG) is defined to be that of the classifying space BG.
Likewise — see the appendix of Atiyah [1] — the characteristic classes of
any representation E of G are defined to be those of the corresponding vector
bundle E = EG×G E → BG.

2.6.1. In dimensions ≤ N a characteristic class of E vanishes iff its re-
striction to BNG vanishes.

Proof. “Only if” is obvious. Using naturality of characteristic classes note
that the restriction is the corresponding class of the bundle ENG ×G E →
BNG. Further the (N+1)-fold join ENG = G·. . .·G is (N−1)-connected, so
its identity map extends to a continuousG-map (EG)N → ENG from theN -
skeleton (EG)N of EG to ENG, thus giving us a bundle map (EG)N ×GE →
ENG ×G E. So, again by naturality, the corresponding class of (EG)N ×G

E → (BG)N is also zero. This gives “if” because the inclusion induced map
H i(BG) → H i((BG)N ) is injective for i ≤ N . �

We’ll equip E with some orientation and let Ẑ denote the integers equipped
with the G-action g • n = ±n, the sign depending on whether E

g→∼= E

preserves or reverses orientation. Now take any continuous G-map s : EG→
E with no zeros on the (N − 1)-skeleton and associate to any oriented N -
simplex σ the degree of the map s : ∂σ → E\{0}. This cochain σ �→
deg(s|∂σ), which is equivariant with respect to the G-actions of EG and Ẑ,
can be verified to be a cocycle, and its cohomology class e(E) ∈ HN (G; Ẑ)
verified to be independent of the map s chosen. For these standard facts of
obstruction theory see Steenrod [23, §35].

For example, we can choose s linear, when of course deg(s|∂σ) ∈ {−1, 0,
+1}, and the “Linear Borsuk-Ulam” 2.4 tells us that this cocycle is nonzero
for all E not containing the trivial representation. The vanishing of its
cohomology class interprets as follows.

2.6.2.

Theorem 1. The representation E has the Borsuk-Ulam property iff the
characteristic class e(E) ∈ HN (G; Ẑ) is nonzero.
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Proof. By 2.6.1 this class is zero iff the corresponding class of the bundle
ENG ×G E → BNG is zero, but this happens (see [23, §35]) iff this vector
bundle admits a continuous nonzero section, i.e., iff there is a continuous
G-map ENG→ E having no zeros. �

It might be appropriate to call e(E) the van Kampen class of E because
it can be traced back, for the case G = Z/2 to [11]. In case the action of G
on E is orientation preserving, i.e., Ẑ = Z, the integers equipped with the
trivial action of G, then e(E) ∈ HN (G;Z) identifies — see Milnor-Stasheff
[15, p. 147] — with the Euler class of the oriented N -dimensional plane
bundle E → BG. Thus, if N is even and E is a complex N/2-dimensional
representation of G, then e(E) coincides — see [15, p. 158] — with the
N/2-th Chern class cN/2(E) of this complex N/2-dimensional bundle E .
Evens [9] has shown that cN/2(E) can always be computed purely alge-
braically, provided one knows the cohomology ring of G and the Brauer
decomposition of E. These computations can be quite hard, but the simple
cases we need are easily dealt with directly.

We recall that Z/q has q irreducible complex representations, all one-
dimensional, being in fact the q homomorphisms Z/q → C

×, ω �→ ω
, 1 ≤
! ≤ q, where ω denotes the generator exp(2πi/q) of Z/q.

2.6.3.

Theorem 2. Let m
 denote the multiplicity of ω
 in the irreducible decom-
position of the complex N/2-dimensional representation E of Z/q. Then E

has the Borsuk-Ulam property iff q 	 |Π
(!)m�.

Proof. We’ll use 2.6.2. The multiplicativity of Chern classes shows

e(E) = cN/2(E) = Π
(c1(ω
))m� ,

where c1(ω
) ∈ H2(Z/q;Z) denotes the first Chern class of the representation
ω �→ ω
 and multiplication is the cup product of H∗(Z/q;Z). Since c1 :
Hom (G,C×) → H2(G;Z) is always a group isomorphism — see Atiyah [1,
(3), p. 62] — it follows that

e(E) = Π
(!c1(ω))m� = Π
(!)m�(c1(ω))N/2 = uN/2(Π
(!)m�),

where u : H i(Z/q;Z) → H i+2(Z/q;Z) is the map given by taking cup prod-
uct with the generator c1(ω) of H2(Z/q;Z) and Π
(!)m� ∈ Z = H0(Z/q;Z).
This periodicity map u is an epimorphism for i = 0 and an isomorphism for
i ≥ 1 (and the remaining odd dimensional cohomology of Z/q is zero): see
Cartan-Eilenberg [7, p. 260]. So it follows that e(E) vanishes iff u(Π
(!)m�)=
Π
(!)m� · c1(ω) vanishes, i.e., iff q divides Π
(!)m� . �

It seems one can give a similar explicit characterization of the complex
Borsuk-Ulam representations of any finite Abelian group G.
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2.7. The last theorem gives rise to some remarks.

2.7.1. Obviously, for a complex Z/q representation E, the group action is
free on S(E) iff only those representations ω �→ ω
 occur in it for which ! is
relatively prime to q. So 2.6.3 shows that the Borsuk-Ulam holds in many
cases not covered by 2.5.

However 2.6.3 also shows that the if q is composite and d+ 1 is an even
number ≥ 4, then there exist continuous Z/q maps EN (Z/q) → L

⊥ having
no zeros. This follows because, for L

⊥ = C
(d+1)/2[Z/q] the number Π
(!)m�

equals ((q − 1)!)(d+1)/2, and q|(q − 1)! unless q is prime or equal to 4. Thus
to generalize the continuous version of the proof of 2.3 beyond the case q
prime one needs non-cyclic groups G.

2.7.2. Sierksma [22] has conjectured that a cardinality (q − 1)(d+ 1) + 1
subset of d-space has at least ((q − 1)!)d Tverberg partitions, i.e., that the
linear map s : EN (Q) → L

⊥ of 2.3 has at least ((q − 1)!)d+1 zeros. It may
in fact be possible to algebraically count these generic Tverberg zeros with
appropriate local degrees ±1, so that one always get ((q−1)!)d+1. One cannot
hope however for a similar index formula for Tverberg partitions, because
this would imply, for q = 3 and d = 2, that the number of these partitions
is always even, which is not so.

If one attempts such a signed counting by using finite group actions then
one runs into problems. For example by taking S ⊂ A

d in a general position
we can ensure that s has no zeros on the (N − 1)-skeleton of EN (Z/q) —
i.e., that no proper subset of S has a Tverberg partition into q parts — and
then evaluate the cocycle σ �→ deg(s|∂σ) of e(L⊥) on some equivariant N -
cycle of EN (Z/q). However this algebraic counting does not give an integer
invariant because e(L⊥) lives in HN (Z/q;Z) ∼= Z/q and so is of finite order.
Anyhow for the q prime case this method does suffice to give rough lower
bounds for the number of Tverberg partitions: see Vučic-Zivaljevic [26].

2.7.3. Sierksma’s problem is stable with respect to d i.e., we can increase
d by 1. To see this add, to a general position S ⊂ A

d ⊂ A
d+1, q − 1 new

points of A
d+1\Ad, and at the same time perturb one of the old points v

out of A
d. In a Tverberg partition of this set Ŝ ⊂ A

d+1 the part containing
v cannot contain any of the new q − 1 points, for then some other part
contains none and so is in A

d, and thus restricting to A
d we would have got

a Tverberg partition of the proper subset S\{v} of the general position set
S ⊂ A

d. Thus Ŝ has at most (q − 1)! times as many Tverberg partitions
as S. A similar but simpler argument shows likewise that the “continuous”
Tverberg problem is also stable with respect to d. So we can assume d+ 1
even (this we’ll do from here on), d� q, etc., with impunity in our proofs.

2.8. The next result has also been proved independently by Ozaydin [16]
and Volovikov [25].
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2.8.1.

Theorem 3. The “continuous” Tverberg theorem is true for all prime pow-
ers q = pk.

Proof. We know from 2.7.1 that the argument of 2.3 can work for k ≥ 2 only
if we use the representation L

⊥(G) of some non-cyclic order q group G. By
2.8.2 below it does work for G = (Z/p)k. �

2.8.2.

Theorem 4. The B-U property holds for any representation E of (Z/p)k

not containing the trivial representation.

Proof. Without loss of generality (cf. proof of 2.5) we can assume E com-
plex. So it is the direct sum of irreducible one-dimensional representations
(Z/p)k → C

×. These form a group, each member being of the type

(ω1, . . . , ωk) �→ ω
1
1 · · ·ω
k

k

where ωi’s denote copies of the generator ω = exp(2πi/p), and 0 ≤ ! < p
with not all !i’s zero. If, in the isomorphic group H2((Z/p)k;Z), xi denotes
the first Chern class of (ω1, . . . , ωk) �→ ωi, then (ω1, . . . , ωk) �→ ω
1

k · · ·ω
k
k

has first Chern class !1x1 + · · ·+ !kxk.
With mod p field coefficients the cohomology algebra of (Z/p)k is isomor-

phic to the polynomial algebra Z/p[x1, . . . , xk] — this follows by using the
case k = 1, B(Z/p) × · · · × B(Z/p) � K((Z/p)k, 1), and the Kunneth for-
mula for field coefficients — and so has no zero divisors. Therefore the cup
product e(E) of all these nonzero 2-dimensional classes !1x1 + · · ·+ !kxk is
nonzero, which by 2.6.2 is same as saying that E has the B-U property. �

2.8.3. Let E be as above, and F be any other representation of (Z/p)k with
dim(F) > dim(E). Then there does not exist a continuous (Z/p)k-map from
the sphere S(F) to the sphere S(E).

This is another (known) generalization of Borsuk’s theorem [6] which is
the case of Z/2 acting on two Euclidean spaces via x �→ −x. See e.g., Atiyah-
Tall [2] and Bartsch [5] for more on equivariant maps between representation
spheres.

Proof. Since dim(F) > N the connectivity of the sphere S(F) allows us
to construct a continuous (Z/p)k-map into it from the free N -dimensional
(Z/p)k-complex EN ((Z/p)k). This and 2.8.2 rule out the possibility of any
equivariant map S(F) → S(E). �

2.9. Unfortunately one cannot extend the “continuous” Tverberg further
by a similar use of other groups G of order q 	= pk.
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2.9.1. For any finite group G whose order is not a prime power there exists
a continuous G-map ENG→ L

⊥(G) having no zeros.
One way of checking this is to note first that if H < G, and L

⊥(H)
does not have the Borsuk-Ulam property, then L

⊥(G) also does not have the
Borsuk-Ulam property. This follows because L(G) is induced by L(H), so
allowing us to construct from a given H-map EN ′(H) → L(H) whose image
misses the diagonal, a G-map EN (G) → L(G) whose image also misses the
diagonal. Hence by 2.6.3 we are only left to consider those G’s, of non-
prime power order, which are such that all elements are of prime order.
Some group theory shows that such a G must contain a subgroup H which
is a non-Abelian extension of (Z/p)k by a cyclic group of a different prime
order. The proof can now be completed by checking that the Euler class of
L
⊥(H) is zero.
We have omitted the details — cf. Bartsch [5] who proceeds as above

(instead of Euler classes he uses a Burnside ring argument) to obtain a
similar result about maps between representation spheres — because we’ll
see below that a simpler reasoning gives more.

2.9.2. The point to note is that in 2.1 to 2.3 the natural group to use was
the symmetric group Σq of all permutations of Q. It acts in the obvious way
on Q · . . . ·Q, and on L, and the map s : Q · . . . ·Q → L

⊥ of 2.3 commutes
with these Σq actions. Further L

⊥ contains no trivial representation of Σq,
or for that matter of any subgroup of Σq which acts transitively on Q. The
only advantage in using the simply transitive subgroups G was that their
action on Q · . . . ·Q is free.

When we consider L
⊥ as a Σq-representation its Euler class lives in

HN (Σq;Z). We were previously looking at its restrictions to HN (G;Z) for
some subgroups G ⊂ Σq, e.g., for q = pk, k ≥ 2, 2.6.3 and 2.8.2 show respec-
tively that this restriction is zero for G = Z/pk but nonzero for G = (Z/pk).
Could it not be that for a q 	= pk this class is nonzero despite the fact 2.9.1
that its restriction to all simply transitive subgroups G is zero? If so the
“continuous” Tverberg would extend to such a q, because we obviously have
a continuous Σq-map from the free and N -dimensional Σq-complex ENΣq

to the (N − 1)-connected Σq-complex Q · . . . ·Q. Unfortunately the answer
to this new question is also “no”.

2.9.3.

Theorem 5. The Euler class of the Σq-representation L
⊥ is nonzero iff q

is a prime power.

Proof. By 2.8.2 it only remains to look at the case q 	= pk. One has
HN (Σq;Z) = ⊕pH

N (Σq;Z, p), where p runs over all primes, and HN (Σq;
Z, p) denotes the p-primary component of HN (Σq;Z). If P ⊂ Σq is a p-
Sylow subgroup then — see Cartan-Eilenberg [7, p. 259, Thm. 10.1] —
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restriction gives us a monomorphism HN (Σq;Z, p) → HN (P ;Z). So it suf-
fices to show that the restriction of our class to each HN (P ;Z) is zero. To
see this note that |P | is not divisible by q 	= pk, so P does not act transitively
on Q, so there are trivial P -representations outside the diagonal of L, i.e.,
in L

⊥. �
Note that, the Σq-action on EN (Q) being not free, this still leaves open the

question whether, for q 	= pk, one can have a continuous Σq-map EN (Q) →
L
⊥ having no zeros? It seems that U(q)-actions are called for to settle this

point, so we postpone it to a sequel which will deal with infinite group
actions.
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[4] I. Bárány, S.B. Shlosman and A. Szücs, On a topological generalization of a theorem
of Tverberg, Jour. Lond. Math. Soc., 23 (1981), 158-164.

[5] T. Bartsch, On the existence of Borsuk-Ulam theorems, Topology, 31 (1992), 533-543.

[6] K. Borsuk, Drei Sätze über die n-dimensionale Euklidische Sphäre, Fund. Math., 20
(1933), 177-190.

[7] H. Cartan and S. Eilenberg, Homological Algebra, Princeton, 1956.

[8] A. Dold, Simple proofs of some Borsuk-Ulam results, Contemp. Math., 19 (1983),
65-69.

[9] L. Evens, On the Chern classes of representations of finite groups, Trans. Amer.
Math. Soc., 115 (1965), 180-193.

[10] G. Kalai, Combinatorics and Convexity, Proc. I.C.M. Zürich, Birkhaüser, (1995),
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