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TVERBERG PARTITIONS AND BORSUK-ULAM
THEOREMS

K.S. SARKARIA

An N-dimensional real representation E of a finite group
G is said to have the “Borsuk-Ulam Property” if any contin-
uous G-map from the (IN + 1)-fold join of G (an N-complex
equipped with the diagonal G-action) to E has a zero. This
happens iff the “Van Kampen characteristic class” of E is
nonzero, so using standard computations one can explicitly
characterize representations having the B-U property. As
an application we obtain the “continuous” Tverberg theo-
rem for all prime powers ¢q, i.e., that some ¢ disjoint faces
of a (¢ — 1)(d 4 1)-dimensional simplex must intersect under
any continuous map from it into affine d-space. The “classi-
cal” Tverberg, which makes the same assertion for all linear
maps, but for all g, is explained in our set-up by the fact that
any representation E has the analogously defined “linear B-U
property” iff it does not contain the trivial representation.

1. Introduction.

This paper is essentially an analysis of a method which I had used in a man-
uscript [19] circulated in 1988-89. Some of its results have in the meantime
been independently obtained by others, and it is possible that the newer
methods of [21] might lead to better results. Nevertheless, it does give a
complete account of one aspect of “the method of deleted joins”: it delin-
eates clearly its power and limitations, as far as the two topics mentioned in
the title are concerned, if one uses only finite groups, as against [21], where
we use a continuous group action.

In 1966 Tverberg [24] showed that any cardinality (¢—1)(d+1)+1 subset
of a real affine d-dimensional space can be partitioned into ¢ disjoint subsets
whose convex hulls have a nonempty intersection; a much easier proof is
given in [20]. There is a “continuous” analogue which asks more: given any
continuous map f from a (¢ —1)(d+ 1)-simplex into d-space, can one always
find ¢ disjoint faces o1, ... , o4 of this simplex such that f(o1)N...N f(og) is
nonempty? For ¢ prime this was established by Béardany-Shlosman-Sziics [4].
In [18] I gave an easy proof of this result using a deleted Z/g-join of the N-
simplex, N = (¢—1)(d+1), viz. the (N+1)-fold join En(Z/q) = Z/q-. . .-Z/q.
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In [19] I attempted to generalize this argument to all ¢ by using, in addition,
the “Van Kampen obstruction” class e. R

The importance of this characteristic class e(E) € HY (G, Z), n = dim(E),
which we define in 2.6 for any real representation E of any finite group G,
stems from the fact — see Theorem 1, 2.6.2 — that it is nonzero iff E has
the Borsuk-Ulam property, i.e., any continuous G-map En(G) — E has
a zero. Using the argument of [18], the “continuous” Tverberg holds if one
has an order ¢ group G for which LY(G), the (d + 1)-fold direct sum of
the non-trivial part of the regular representation, has this B-U property.
Our Theorem 2, 2.6.3 gives a complete characterization of complex Z/g-
representations having the B-U property. In particular, it shows that the
representations ]LL(Z/ q) all have this property iff ¢ is prime, which gives of
course the B-S-S theorem, and shows also that to go beyond one needs to
look at finite non-cyclic groups. Amusingly, the original Tverberg theorem
also fits neatly into this B-U framework: we check that the argument of [20)]
or [10] is really just the same, except that one now invokes a linear analogue
2.4 of the B-U property which holds for all g. The next Theorem 3, 2.8.1 gen-
eralizes the “continuous” Tverberg to all prime powers ¢ = p* and has also
been proved independently by Ozaydin [16] and Volovikov [25]. It follows at
once from Theorem 4, 2.8.2 which says that a representation of (Z/p)* has
the B-U property iff it does not contain the trivial representation. Finally
in 2.9, we embed the Z/g-action of L*(Z/q) in an action of the symmetric
group Y4, and show — see Theorem 5, 2.9.3 — that the characteristic class
of this ¥, representation is zero iff ¢ is not a prime power. To go beyond
prime powers it thus seems necessary to use continuous group actions.

The exposition below is self-contained except that we refer to the litera-
ture for standard facts regarding Chern classes of finite group actions. For
more background material see also Mark de Longueville’s notes [13] of a
seminar based on this paper.

2. Borsuk-Ulam representations.

The main character of our story is a real N-dimensional group representation
E which does not contain the trivial representation, mostly E = L+ (defined
in 2.2 below) which has dimension N = (¢ — 1)(d + 1).

2.1. By the ¢-th deleted join [17] K % --- % K of a simplicial complex K
one understands the subcomplex of its ¢-fold join K -...- K consisting of all
simplices (01,... ,04) with o; N oj =0 Vi # j. Mostly K = [N] = all faces
of the N-simplex {e1,... ,en+1}. Let Q be a cardinality ¢ set. Denoting the
q copies of each e, by geq, g € Q, [N]-...-[N] consists of all subsets of the
cardinality (N +1) set {geq : g € Q, 1 < a < N+1}, and [N]*---x[N] of all
faces of all N-simplices of the type {gie1,... ,gn+1en+1}. S0 [N]s*---%[N]
(¢ times) identifies with Ex(Q) =Q - ... - @ (N + 1 times).
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Frequently we’ll equip the set Q with a group structure G, and then let G

act simplicially on [N]-...-[N] by he(ge,) = (hg)en. Note that this action
preserves, and is free on, the subcomplex [N]x*--- % [N]. We recall that such
free G-complexes En(G) =G -...- G (N + 1 times), EG = UyEN(G), go

into Milnor’s definition [14] of a classifying space BG of G : BG = EG/G =
UN(BNG), where BNyG = EN(G)/G.

2.2. We'll identify our affine d-space A% with the hyperplane Yz, = 1 of
R and the g-fold product R4 x .. x R4*! with the vector space L of
all real (d+ 1) x ¢ matrices, with ' denoting the (¢ —1)(d+ 1) dimensional
subspace consisting of all matrices having row sums zero. Note that L' is
the orthogonal complement of the diagonal subspace A of matrices having
all columns equal to each other.

We'll index the columns of our matrices by the cardinality g set Q). Fre-
quently @ will be equipped with a group structure GG, and then we’ll permute
the columns by left translations. The resulting representations of G will be
denoted IL(G) and L+(G). Note that L(G) = RG], the (d + 1)-fold
direct sum of the regular representation R[G] provided by each row, and
that L+ (G) contains no trivial representation. So the action of G on the
unit sphere S(IL1) is always without fixed points. When d + 1 is even we’ll
identify L(G) with the representation C@*t1/2[G] provided by all % X q
complex matrices by taking real and imaginary parts of each row, and we’ll
equip L(G) with the orientation prescribed by this complex structure.

For the case G = Z/q note that the action is free on S(L1) iff ¢ is prime,
and that the action preserves the orientation of L+(Z/q) iff (¢ — 1)(d+ 1) is
even.

2.3. Proof of theorems of Tverberg and Barany-Shlosman-Sziics.
Let sq, 1 <a < N+1, N =(g—1)(d+1), be the points of the given set S C

A9 and consider the linear map K = [N] J, A such that €q — Sq ¥V a.. More

generally consider any continuous map [N] 7. A, We want to show that
there exist ¢ disjoint faces o1 ... ,04 of K such that f(o1)N...N f(og) # 0.
Equivalently, if we compose the ¢-fold join K % ---x K — A%. .. . A? C
R x ... x R4 = L of f with the orthogonal projection L. — L to get
a map

s:[N]#---%[N] - L*,
then what we have to show is that 0 € Im (s).

For this, note first that s commutes with the group actions, defined above.
Now the linear case follows by applying the “linear Borsuk-Ulam” theorem
2.4. Likewise, for ¢ prime, we see that the Z/¢-map s associated to a con-
tinuous f must have a zero, by using the generalization 2.5 of the usual
continuous Borsuk-Ulam. O
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2.4. “Linear Borsuk-Ulam”. If E does not contain the trivial represen-
tation, then any linear G-map s : EN(G) — E has a zero.
Note that the condition on E is obviously necessary.

Proof. This is a particular case of Barany [3] the argument being as follows.
If conv (s(ga€a) : go € G, 1 < a < N+1) is at a distance 6 > 0 from 0 € E,
then its nearest point P is contained in the hyperplane H normal to OP and
out of the points s(gn€q) we can choose < N which all lie on H and are such
that P is in their convex hull. The remaining points will be either on H or
in the component of E\H not containing {0}. Let s(ggeg) be any of these
points. Since s commutes with the G actions, and E does not contain the
trivial representation, we have ¥gs(geg) = Xg9(seg) = 0. So some s(geg)
must be in the component of E\ H which contains {0}. Replacing gz by such
a g we can make 0 still smaller. So the minimum ¢ must be zero. O

s(gpep)

Figure 1.

2.5. Liulevicius [12], Dold [8]. If G # 1 acts freely on S(E) then E has the
Borsuk-Ulam property, i.e., every continuous G-map s : En(G) — E has a
Z€ero0.

This generalizes Borsuk’s theorem [6] which says (because En(Z/2) =
octahedral N-sphere equipped with the antipodal Z/2 action) that the rep-
resentation of Z/2 in RV given by 2 +— —z has the B-U property.

Proof. It suffices to prove the result for complex representations, for if there
were a G-map En(G) — S(E), then its 2-fold join would provide a G-map
Eyn(G) C Eany1(G) — S(E) - S(E) = S(E@E 2 E ® C) with G acting
freely on S(E @ C).



BORSUK-ULAM THEOREMS 235

Also it suffices to do just the prime cyclic case: for each G contains a
subgroup H = 7 /p, and this case then gives us at least |G|+ p zeros, one in
each En(Hy) = (Hy)-...-(Hg). So the result follows from 2.6.3 which in fact
gives for all ¢ an explicit characterization of complex Z/q representations
having the Borsuk-Ulam property. ([

2.6. Characteristic classes of representations. Recall that the coho-
mology of G = 71(BG) is defined to be that of the classifying space BG.
Likewise — see the appendix of Atiyah [1] — the characteristic classes of
any representation [E of G are defined to be those of the corresponding vector
bundle £ = EG x¢ E — BG.

2.6.1. In dimensions < N a characteristic class of € vanishes iff its re-
striction to BNyG vanishes.

Proof. “Only if” is obvious. Using naturality of characteristic classes note
that the restriction is the corresponding class of the bundle ENyG xg E —
BnG. Further the (N +1)-fold join ENG = G-...-G is (N —1)-connected, so
its identity map extends to a continuous G-map (EG)y — EnG from the N-
skeleton (EG)y of EG to ExG, thus giving us a bundle map (EG)y XgE —
EnNG x¢g E. So, again by naturality, the corresponding class of (EG)y X¢
E — (BG)y is also zero. This gives “if” because the inclusion induced map
H(BG) — H'((BG)y) is injective for i < N. O

We'll equip E with some orientation and let Z denote the integers equipped
with the G-action g e n = +n, the sign depending on whether F % E

preserves or reverses orientation. Now take any continuous G-map s : EG —
E with no zeros on the (N — 1)-skeleton and associate to any oriented N-
simplex o the degree of the map s : do — E\{0}. This cochain o —
deg(s|0c), which is equivariant with respect to the G-actions of EG and Z,
can be verified to be a cocycle, and its cohomology class e(E) € HY (G, i)
verified to be independent of the map s chosen. For these standard facts of
obstruction theory see Steenrod [23, §35].

For example, we can choose s linear, when of course deg(s|do) € {—1,0,
+1}, and the “Linear Borsuk-Ulam” 2.4 tells us that this cocycle is nonzero
for all E not containing the trivial representation. The vanishing of its
cohomology class interprets as follows.

2.6.2.

Theorem 1. The representation E has the Borsuk-Ulam property iff the
characteristic class e(E) € HN(G;Z) is nonzero.
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Proof. By 2.6.1 this class is zero iff the corresponding class of the bundle
EnG xgE — BnG is zero, but this happens (see [23, §35]) iff this vector
bundle admits a continuous nonzero section, i.e., iff there is a continuous
G-map EnG — E having no zeros. O

It might be appropriate to call e(E) the van Kampen class of E because
it can be traced back, for the case G = Z/2 to [11]. In case the action of G
on K is orientation preserving, i.e., 7 = Z, the integers equipped with the
trivial action of G, then e(E) € HY(G;Z) identifies — see Milnor-Stasheff
[15, p. 147] — with the Euler class of the oriented N-dimensional plane
bundle & — BG. Thus, if N is even and E is a complex N/2-dimensional
representation of G, then e(E) coincides — see [15, p. 158] — with the
N/2-th Chern class cyj2(E) of this complex N/2-dimensional bundle .
Evens [9] has shown that cy/o(E) can always be computed purely alge-
braically, provided one knows the cohomology ring of G and the Brauer
decomposition of E. These computations can be quite hard, but the simple
cases we need are easily dealt with directly.

We recall that Z/q has ¢ irreducible complex representations, all one-
dimensional, being in fact the ¢ homomorphisms Z/q — C*, w — w’, 1 <
¢ < q, where w denotes the generator exp(2mi/q) of Z/q.

2.6.3.

Theorem 2. Let my denote the multiplicity of w® in the irreducible decom-
position of the complex N/2-dimensional representation E of Z/q. Then E
has the Borsuk-Ulam property iff ¢ J11,(£)™¢.

Proof. We'll use 2.6.2. The multiplicativity of Chern classes shows
e(E) = cy/a(E) = My(er (wh)™,

where ¢;(w’) € H?(Z/q; Z) denotes the first Chern class of the representation
w — w’ and multiplication is the cup product of H*(Z/q;Z). Since c; :
Hom (G,C*) — H?(G;7Z) is always a group isomorphism — see Atiyah [1,
(3), p. 62] — it follows that

e(E) = y(fer(w)™ = He(€)™ (e1(w))/? = w2 (ILe(0)™),

where v : H(Z/q;7Z) — H"?(Z/q;Z) is the map given by taking cup prod-
uct with the generator cj(w) of H%(Z/q;7Z) and II,(£)™ € Z = H°(Z/q; 7).
This periodicity map u is an epimorphism for ¢ = 0 and an isomorphism for
i > 1 (and the remaining odd dimensional cohomology of Z/q is zero): see
Cartan-Eilenberg [7, p. 260]. So it follows that e(E) vanishes iff u(II,(¢)") =
IIy(€)™ - ¢1(w) vanishes, i.e., iff ¢ divides II,(¢)™¢. O

It seems one can give a similar explicit characterization of the complex
Borsuk-Ulam representations of any finite Abelian group G.
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2.7. The last theorem gives rise to some remarks.

2.7.1. Obviously, for a complex Z/q representation E, the group action is
free on S(E) iff only those representations w +— w® occur in it for which £ is
relatively prime to q. So 2.6.3 shows that the Borsuk-Ulam holds in many
cases not covered by 2.5.

However 2.6.3 also shows that the if ¢ is composite and d + 1 is an even
number > 4, then there exist continuous Z/q maps Ex(Z/q) — L+ having
no zeros. This follows because, for L+ = C(#*+1/2[7Z /q] the number II,(£)™
equals ((¢ — 1)!)(¢+D/2 "and ¢|(g — 1)! unless ¢ is prime or equal to 4. Thus
to generalize the continuous version of the proof of 2.3 beyond the case ¢
prime one needs non-cyclic groups G.

2.7.2. Sierksma [22] has conjectured that a cardinality (¢ — 1)(d+1) +1
subset of d-space has at least ((¢ — 1)!)? Tverberg partitions, i.e., that the
linear map s : En(Q) — Lt of 2.3 has at least ((¢ — 1)) zeros. It may
in fact be possible to algebraically count these generic Tverberg zeros with
appropriate local degrees +1, so that one always get ((g—1)!)%*!. One cannot
hope however for a similar index formula for Twerberg partitions, because
this would imply, for ¢ = 3 and d = 2, that the number of these partitions
is always even, which is not so.

If one attempts such a signed counting by using finite group actions then
one runs into problems. For example by taking S C A% in a general position
we can ensure that s has no zeros on the (N — 1)-skeleton of En(Z/q) —
i.e., that no proper subset of S has a Tverberg partition into g parts — and
then evaluate the cocycle o — deg(s|dc) of (L") on some equivariant N-
cycle of En(Z/q). However this algebraic counting does not give an integer
invariant because e(IL*) lives in HV(Z/q;7Z) = 7./q and so is of finite order.
Anyhow for the ¢ prime case this method does suffice to give rough lower
bounds for the number of Tverberg partitions: see Vuéic-Zivaljevic [26].

2.7.3. Sierksma’s problem is stable with respect to d i.e., we can increase
d by 1. To see this add, to a general position S C A4 C A%l ¢ — 1 new
points of AYT1\A? and at the same time perturb one of the old points v
out of A?. In a Tverberg partition of this set S C A% the part containing
v cannot contain any of the new ¢ — 1 points, for then some other part
contains none and so is in A%, and thus restricting to A we would have got
a Tverberg partition of the proper subset S\{v} of the general position set
S c Ad. Thus S has at most (¢ — 1)! times as many Tverberg partitions
as S. A similar but simpler argument shows likewise that the “continuous”
Tverberg problem is also stable with respect to d. So we can assume d + 1
even (this we’ll do from here on), d > ¢, etc., with impunity in our proofs.

2.8. The next result has also been proved independently by Ozaydin [16]
and Volovikov [25].
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2.8.1.

Theorem 3. The “continuous” Twverberg theorem is true for all prime pow-
k

ers q = p~.

Proof. We know from 2.7.1 that the argument of 2.3 can work for £ > 2 only
if we use the representation L (G) of some non-cyclic order ¢ group G. By
2.8.2 below it does work for G = (Z/p)*. O

2.8.2.

Theorem 4. The B-U property holds for any representation E of (Z/p)*
not containing the trivial representation.

Proof. Without loss of generality (cf. proof of 2.5) we can assume E com-
plex. So it is the direct sum of irreducible one-dimensional representations
(Z/p)* — C*. These form a group, each member being of the type

(Wi, ,wg) wal-'-wik

where w;’s denote copies of the generator w = exp(27mi/p), and 0 < £ < p
with not all £;’s zero. If, in the isomorphic group H?((Z/p)*;Z), ; denotes
the first Chern class of (wi,... ,wk) — w;, then (wi,... ,wg) — wil . -wi‘“
has first Chern class 1z + - - - + lpxp.

With mod p field coefficients the cohomology algebra of (Z/p)* is isomor-
phic to the polynomial algebra Z/p[z1,... ,z;] — this follows by using the
case k = 1, B(Z/p) x --- x B(Z/p) ~ K((Z/p)*,1), and the Kunneth for-
mula for field coefficients — and so has no zero divisors. Therefore the cup
product e(E) of all these nonzero 2-dimensional classes 11 + - - - + {xy s
nonzero, which by 2.6.2 is same as saying that £ has the B-U property. U

2.8.3. Let E be as above, and F be any other representation of (Z/p)* with
dim(F) > dim(E). Then there does not exist a continuous (Z/p)*-map from
the sphere S(IF) to the sphere S(E).

This is another (known) generalization of Borsuk’s theorem [6] which is
the case of Z/2 acting on two Euclidean spaces via  — —z. See e.g., Atiyah-
Tall [2] and Bartsch [5] for more on equivariant maps between representation
spheres.

Proof. Since dim(F) > N the connectivity of the sphere S(F) allows us
to construct a continuous (Z/p)¥-map into it from the free N-dimensional
(Z/p)*F-complex En((Z/p)¥). This and 2.8.2 rule out the possibility of any
equivariant map S(F) — S(E). O

2.9. Unfortunately one cannot extend the “continuous” Tverberg further
by a similar use of other groups G of order ¢ # p*.
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2.9.1. For any finite group G whose order is not a prime power there exists
a continuous G-map ExG — L (G) having no zeros.

One way of checking this is to note first that if H < G, and L*(H)
does not have the Borsuk-Ulam property, then ]LJ-(G) also does not have the
Borsuk-Ulam property. This follows because L(G) is induced by L(H), so
allowing us to construct from a given H-map FEy/(H) — L(H) whose image
misses the diagonal, a G-map En(G) — L(G) whose image also misses the
diagonal. Hence by 2.6.3 we are only left to consider those G’s, of non-
prime power order, which are such that all elements are of prime order.
Some group theory shows that such a G must contain a subgroup H which
is a non-Abelian extension of (Z/p)* by a cyclic group of a different prime
order. The proof can now be completed by checking that the Euler class of
L+ (H) is zero.

We have omitted the details — cf. Bartsch [5] who proceeds as above
(instead of Euler classes he uses a Burnside ring argument) to obtain a
similar result about maps between representation spheres — because we’ll
see below that a simpler reasoning gives more.

2.9.2. The point to note is that in 2.1 to 2.3 the natural group to use was
the symmetric group ¥, of all permutations of (). It acts in the obvious way
on@-...-Q,and on L, and the map s : Q -...- Q — L of 2.3 commutes
with these Y, actions. Further L' contains no trivial representation of g
or for that matter of any subgroup of ¥, which acts transitively on ). The
only advantage in using the simply transitive subgroups G was that their
action on @ - ... - Q is free.

When we consider L+ as a Y4-representation its Euler class lives in
HY(%4; 7). We were previously looking at its restrictions to HY(G;Z) for
some subgroups G C ¥, e.g., for ¢ = pF, k> 2, 2.6.3 and 2.8.2 show respec-
tively that this restriction is zero for G = Z/p* but nonzero for G = (Z/p*).
Could it not be that for a ¢ # p* this class is nonzero despite the fact 2.9.1
that its restriction to all simply transitive subgroups G is zero? If so the
“continuous” Tverberg would extend to such a ¢, because we obviously have
a continuous Y ,-map from the free and N-dimensional ¥ ,-complex En3,

to the (/N — 1)-connected ¥ ,-complex @ -...- Q. Unfortunately the answer
to this new question is also “no”.
2.9.3.

Theorem 5. The Euler class of the Yg-representation Lt is nonzero iff q
1S G prime power.

Proof. By 2.8.2 it only remains to look at the case ¢ # p*. One has
HN(EQ;Z) = EBpHN(Zq;Z,p), where p runs over all primes, and HN(Zq;
Z,p) denotes the p-primary component of HY(X,;Z). If P C %, is a p-
Sylow subgroup then — see Cartan-Eilenberg [7, p. 259, Thm. 10.1] —
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restriction gives us a monomorphism H™(3,;Z,p) — HN(P;Z). So it suf-
fices to show that the restriction of our class to each H™(P;Z) is zero. To
see this note that | P| is not divisible by ¢ # p¥, so P does not act transitively
on (), so there are trivial P-representations outside the diagonal of L, i.e.,
in L. O

Note that, the ¥ ,-action on En(Q) being not free, this still leaves open the
question whether, for g # p*, one can have a continuous ¥,-map En(Q) —
L+ having no zeros? It seems that U(q)-actions are called for to settle this
point, so we postpone it to a sequel which will deal with infinite group
actions.

References

[1] M.F. Atiyah, Characters and cohomology of finite groups, Publ. LH.E.S., 9 (1961),
23-64.

[2] M.F. Atiyah and D.O. Tall, Group representations, A-rings and the J-homomorphism,
Topology, 8 (1969), 253-297.

[3] 1. Barany, A generalization of Carathéodory’s theorem, Disc. Math., 40 (1982), 141-
152.

[4] 1. Barany, S.B. Shlosman and A. Sziics, On a topological generalization of a theorem
of Tverberg, Jour. Lond. Math. Soc., 23 (1981), 158-164.

[5] T. Bartsch, On the existence of Borsuk-Ulam theorems, Topology, 31 (1992), 533-543.

[6] K. Borsuk, Drei Sitze tber die n-dimensionale Fuklidische Sphdre, Fund. Math., 20
(1933), 177-190.

[7] H. Cartan and S. Eilenberg, Homological Algebra, Princeton, 1956.

[8] A. Dold, Simple proofs of some Borsuk-Ulam results, Contemp. Math., 19 (1983),
65-69.

[9] L. Evens, On the Chern classes of representations of finite groups, Trans. Amer.
Math. Soc., 115 (1965), 180-193.

[10] G. Kalai, Combinatorics and Convezity, Proc. I.C.M. Ziirich, Birkhaiiser, (1995),
1363-1374.

[11] E.R. van Kampen, Kompleze in euklidischen Rdumen, Abhand. Math. Sem. Ham-
burg, 9 (1932), 72-78, 152-153.

[12] A. Liulevicius, Borsuk-Ulam theorems for spherical space forms, Contemp. Math., 19
(1983), 189-192.

[13] M. de Longueville, The topological Tverberg theorem for prime powers, Seminar notes,
Technisches Universitat Berlin, 1998.

[14] J.W. Milnor, Construction of universal bundles, 11, Ann. of Math., 63 (1956), 430-436.
[15] J.W. Milnor and J.D. Stasheff, Characteristic Classes, Princeton, 1974.

[16] M. Ozaydin, Fquivariant maps for the symmetric group, unpublished.

[17] K.S. Sarkaria, A generalized Kneser conjecture, J. Combin. Th., B 49 (1990), 236-340.
(18]

, A generalized van Kampen-Flores Theorem, Proc. Amer. Math. Soc., 111
(1991), 559-565.



BORSUK-ULAM THEOREMS 241

[19] , Sierksma’s Dutch Cheese Problem, ms. circulated in 1988-89, unpublished.
[20] |, Twerberg’s theorem via number fields, Isr. Jour. of Math., 79 (1992), 317-320.
[21] , Sierksma’s Dutch Cheese Problem, revised version of M.S.R.I. Berkeley

preprint, 1997-025.

[22] G. Sierksma, Convezity without linearlity; the Dutch cheese problem, Mimeographed
Notes, University of Gréningen, 1979.

[23] N.E. Steenrod, The topology of fibre bundles, Princeton, 1951.

[24] H. Tverberg, A generalization of Radon’s theorem, Jour. Lond. Math. Soc., 41 (1966),
123-128.

[25] A.Yu. Volovikov, On a topological generalization of the Tverberg theorem, Math.
Notes, 59 (1996), 324-326; Mat. Zametki, 59 (1996), 454-456.

[26] A. Vucic and R.T. Zivaljevic, Note on a conjecture of Sierksma, Disc. Comput. Geom.,
9 (1993), 339-349.

Received August 15, 1998.

PANJAB UNIVERSITY
CHANDIGARH 160014
INDIA

This paper is available via http://nyjm.albany.edu:8000/PacJ/2000/196-1-11.html.


http://nyjm.albany.edu:8000/PacJ/2000/196-1-11.html

