
in`k‐su`k
(A miscellany–horizons of half-turn tilings, hobson’s choice, garlands, fuchsian

and kleinian actions, etc.–for my five part paper starting with khayyam.)

− : − : −

On page 380 of Jordan’s Traité (1870) is “Theorem. Solving the general
equation X = xq + axq−1 + · · · = 0 reduces, after adjoining some numbers
depending only on q, to the equation E which gives bisection of periods of
hyperelliptic functions formed with the square root of X:- Indeed, the roots
of E, being monodromic functions of those of X, can only contain in their
expressions such constants. Let us adjoin these irrationals: the roots of E will
become rational functions of those of X. Let us adjoin these to the equation X:
the group of this last equation will be reduced to that of substitutions leaving
invariant all the roots of E, that is to say, the sole substitution 1.”

− : − : −

The horizon of a cardinality n set � of roots on a circle of radius r bounds
the region till which their angle-sum 2π half-turns tiling propagates. For n = 2
we know this region is the containing 2-sphere of radius r; for n = 3 one of a
bigger radius R(�); for n = 4 that plane, so horizon is the point ∞; and if n > 4
horizon bounds a containing concentric open disk of radius R(�) depending on
the roots; but, is there a nice formula for R(�)?

If A1, A2 and O are not on a line, there is a unique circle through A1, A2

normal to the circle of radius R around O, its centre O′ the point on the right
bisector of A1A2 such that (OO′)2 = R2 + (O′Ai)

2; further,
if OA1 = OA2 = r and ∠A1OA2 = ϕ the tangents at Ai to the normal circle

make angle θ = tan−1[R
2−r2

R2+r2 cot ϕ
2 ] with OAi (we check θ(R) increases strictly

from 0 towards π−ϕ
2 as R goes from r to ∞) :- With respect to axes along

and perpendicular to OA1—note A1 = A,A2 = B in figure—A1 = (r, 0) and
O′ = (t cos ϕ

2 , t sin ϕ
2 ) where t2 = R2 + (t cos ϕ

2 − r)2 + (t sin ϕ
2 )

2, so t = R2+r2

2r cos ϕ
2

;

which shows tan θ =
t cos ϕ

2 −r

t sin ϕ
2

= R2−r2

R2+r2 cot ϕ
2 .� So,
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the curved n-gon with consecutive vertices zj = reiϕj ∈ C and sides normal
to |z| = R has angle-sum Θ =

∑
j 2 tan−1[R

2−r2

R2+r2 cot ϕj+1−ϕj

2 ] ∀R ≥ r:- curved
angle at zj is tan−1[R

2−r2

R2+r2 cot ϕj+1−ϕj

2 ] + tan−1[R
2−r2

R2+r2 cot ϕj−ϕj−1

2 ].�
Cotangent decreasing on (0, π) with cot(π2 +α) = − cot(π2 −α) checks above

even if one arc zjzj+1 is a semicircle or bigger, e.g., for n = 2 both curved
angles are 0, but for n > 2 all increase continuously from 0 towards the angles
of the euclidean n-gon as R goes from r to ∞. The parallel postulate of Euclid
amounts to saying that when we describe any euclidean n-gon in the positive
direction total angle we turn is 2π, i.e., the sum of internal angles is (n − 2)π,
the limit of the strictly increasing curved angle sum Θ(R) as R goes to ∞.
Hence, for n > 4, there is a unique value of R—the aforementioned horizon
R(z1, . . . , zn)—such that Θ(R) = 2π.

When 0 < R < r the above factor R2−r2

R2+r2 increases from −1 to 0, so for
each degree n > 4 equation � with distinct roots of equal length there also
exists a unique such value at which the sum of the now negative curved angles
becomes −2π. That is, the complementary tile has sum of internal angles 2π,
and starting with this half-turns generate: the tiling of a closed disk complement
in Ĉ = C ∪∞ obtained by reflection in the circle |z| = r. Also, for each degree
four equation with distinct roots of equal length, there is this reflected tiling by
mobius half-turns of Ĉ \ 0.

− : − : −

Half-turns ‘complexify’ linear reflections, e.g., that about the midpoint of a
circular arc joining points zi and zi+1 of |z| = r and normal to |z| = R is the
composition of reflections in the line through origin and midpoint and in the
circle of the arc (composition in either order because these mirrors cut normally,
otherwise inverse is different). The (möbius or) baby group of the extended plane
is generated by reflections in all its circles, and has as its component of identity
all orientation preserving elements, so is generated by compositions of pairs of
reflections : if this pair of circular mirrors intersects in two points we obtain
a baby turn about and by twice the angle of these intersections (of turns only
those preserving the round metric are rotations and make a compact subgroup
SO(3) to which this component retracts); if mirrors intersect in just one point
we’ll call them translations; and if they don’t intersect homotheties. The other
component of the baby group consists of all orientation reversing elements, i.e.,
compositions of an odd number of reflections.

− : − : −

Complex inverse z 7→ 1
z gives a half-turn of Ĉ about ±1, being the reflection

z 7→ z in the real axis followed by reflection z 7→ 1
z in the circle |z| = 1, and these

mirrors cut normally in these two points. More generally, conjugation followed
by reflection z−a

r 7→ r
z−a in circle |z − a| = r gives z 7→ r2

z−a + a = az+r2−|a|2
z−a

which has—solve z2−z(a+a)−r2+|a|2 = 0—fixed points a1±
√
r2 − a22 where a1

and a2 are the real and imaginary parts of a. If real and distinct Ĉ turns about
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them moving all circles through them by same angle—see Coxeter pages 84-89—
but preserves circles of the orthogonal family; if equal it translates or pushes
circles tangent to the real axis at this point and preserves the orthogonal circles;
if complex the fixed points are source and sink of this homothety preserving
circles through them and pushing the orthogonal family.

Mutiplication z 7→ az, a bijection of Ĉ for a 6= 0, is identity if a = 1, otherwise
has only fixed points 0 and ∞, but may neither preserves circles through them,
i.e., lines through origin, nor the orthogonal circles with origin centre. However
multiplication by r 6= 1 positive real is a homothety, reflection in |z| = 1 followed
by reflection in distinct circle |z| =

√
r, with ∞ as source or sink depending on

0 < r < 1 or r > 1; and by eiθ, θ 6= 0, being reflection z 7→ z in R followed by
reflection in distinct line through 0 and eiθ/2 is a turn of Ĉ about {0,∞} by
angle θ, e.g., z 7→ −z is a half-turn.

Addition z 7→ z+ a is identity if a = 0, otherwise this bijection of Ĉ has sole
fixed point ∞ and is a translation, the composition of reflections in the lines
perpendicular to 0a through 0 and a/2, in this order.

− : − : −

Thus the orientation preserving component of the baby group of the extended
plane consists of all bijections arising from addition, multiplication and inverse
of complex numbers. So these planar numbers are convenient in dimension two,
but—recall the baby playing with blocks—there is nothing now like the intimacy
between counting and segments; besides, for the baby group of all compositions
of reflections in all codimension one spheres of extended n-space, we have to live
without any such convenience, once n ≥ 3.

For example, since all orientation preserving baby bijections of the extended
plane Ĉ are all maps z 7→ αz+β

γz+δ with coefficients such that αδ−βγ is nonzero—if
need be we can make this determinant one—non-identity maps have at most two
fixed points—given by γz2+(δ−α)z−β = 0—so at most just one mapping three
points to three other, and since z 7→ z−z1

z2−z1
z3−z2
z3−z takes (z1, z2, z3) to (0, 1,∞),

this unique map exists, etc.
− : − : −

Recalling about half-turn tilings, euclidean twice branched and unbranched
with double valence; for any quadrilateral unbranched, degeneration though; for
curved geometry unbranched with multiple valences, branched with any n-gons,
fractional values of inverse function branched; straightening geometry, a suitable
figure seeing herself multiple times, central reflections now, light, halo, relativity.
After straightening the made tiling by that radial self-homeomorphism of the
disk of radius R and using the new cayley r′ we’ll put c = R/r′; as is, in this
möbius or conformal picture we’ll use letter u. Maybe it is best to start from all
|zi| = 1 only because expression below obtainable from it obviously has scaling
interpretation for |zi| = r, but note excluded point 0 is all important, we don’t
translate it for instance, and it is schlicht mapping of open unit disk preserving
its origin that we’ll be constructing as � moves more generally over the entire
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complex swallowtail.
− : − : −

Further, Θ
2 =

∑
j tan−1[R

2−r2

R2+r2 .i
zj+1+zj
zj+1−zj

]:- ‘adjacent’ zj+1+zj
2 rotated by 90◦

has direction (or its negative, if ϕj+1 − ϕj > π) of ‘opposite’ zj+1−zj
2 , so ‘cot =

adjacent/opposite’ of ϕj+1−ϕj

2 is equal to i zj+1+zj
zj+1−zj

.� So far tan was restricted
to (−π

2 ,+
π
2 ) and R2−r2

R2+r to 0 < r ≤ R < ∞, but right hand side is a multi-valued
meromorphic extension of Θ

2 for any cyclically ordered n distinct zj ∈ C \ 0,
and any complex number—in above case R2−r2

R2+r2 ∈ R—or hobson’s choice z ∈ C,
which we’ll tie to a general cyclic sequence zj below.

Only their ratios uj =
zj+1

zj
∈ C \ {0, 1} enter above, but they fix the roots

zj ‘if separated enough’, because we can write all others in terms of say z1, and
the nonzero constant coefficient of � gives

∏
j zj (but all elementary symmetric

functions of u1, ..., un are not symmetric functions of z1, ..., zn). So the degree
k elementary symmetric functions ek of wj = i zj+1+zj

zj+1−zj
are ‘sort of’ known even

from the coefficients of �. However like Umemura we won’t go into separation,
indeed for practical purposes there are well-known methods for approximating
roots of any given equation to any accuracy.

The unknown is c = R
r making Θ = 2π, from which we can then construct

by ruler and compass the entire curved half-turn tiling, for the case all |zj | = r.
For the general case, c is an unknown nonzero complex number, and let’s use z =
c2−1
c2+1 .1 With these abbreviations Θ

2 =
∑

j tan−1[zwj ] which gives—cf. Hobson’s
Trigonometry (1891), §§ 49, 187—on taking tan of both sides

tan(Θ/2) =
e1z − e3z

3 + e5z
5 − · · ·

1− e2z2 + e4z4 − · · ·

So setting above numerator equal to zero– essentially a lower degree equation
constructed from the coefficients of � – gives all circles of radii making angle-
sum a multiple of 2π at most (n−2)π, horizon being smallest; for n = 4 horizon
becomes point {∞}; but for n = 3 no horizon, the bulging external angle-sum 2π

tile births three more completing a tetrahedral tiling of Ĉ and these half turns
complete a klein four group; while the two-tiled n = 2 school case is its limit as
one of the three roots proceeds to infinity. Thus known stuff for n = 2, 3 and 4
including Hermite’s warm-up elliptic method for n = 4 should also be covered.
The solving multiperiodic meromorphic functions (even the circular functions
used in above calculation)—giving the quotient Ĉ, by dividing by the full n half-
turns group, and a surface of genus [n2 ]−1 obtained by dividing only by its freely
acting index two subgroup, of our tiling—can all be constructed by averaging à
la valentine day 1881 note of Poincaré, and its sequel of a week later, the rational
function coming from �. Solving the fuchsian differential equation tied to the
latter is equivalent to inverting Legendre’s indefinite hyperelliptic integral, so

1Or c2 = z+1
z−1

can be unknown, likewise coefficients of equation set below can be written
using ratios uj instead of wj , the point is our argument shows that, when |zj | are equal and
in circular order, this equation has distinct real positive roots c2.
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the periods of this solution or integral over the homologically non-trivial loops
of that surface give us the translations of the index two group having the union
of any two adjacent tiles as a fundamental region.

For n = 3 calculations will be akin to that paper with Zoltek, and for n = 4
taking limit over disks of increasing radius gives required elliptic function from
same theta function recipe of Poincaré.

− : − : −

There are also reciprocal tilings under z 7→ r2

z for all n ≥ 4, for n = 4 this is
a cuved tiling of Ĉ \ 0 instead of straight rooftop tiling of Ĉ \∞ = C, the point
horizon 0 instead of ∞, but for n = 2 and 3 there is no real positive horizon,
but note zero multiple of 2π so far being thrown out gives the horizon-less two
tiles filling Ĉ for n = 2, for n = 3 the imaginary pair of roots of z2 = e1/e3 –
note now right side is a symmetric function of the roots of the cubic � so can be
written without solving it – gives us the two associated horizon-less tetrahedral
tilings of the riemann sphere visualized in the beginning as round, but can also
be stereographed and imagined as two horizonless tilings of Ĉ.

− : − : −

For any n = 4 distinct roots of unit length there is a 2π angle sum tiling
of Ĉ \ c for each c not on the unit circle. When ∞ the rooftop tiling, when
0 its reflection – not complex inversion 1/z, a half-turn with fixed points ±1,
because it makes roots complex conjugates – in unit circle, now arcs are from
circle through 0; likewise all circles through c will gives tiling mentioned. Instead
of unit here we can take any circle, even a straight line, so above applies to all
roots real. As noted before when roots wander off circle (holomorphically, but
lets look first at baby or mobius transformations, so new roots also concyclic)
rooftop tiling collapses whenever the four become colllinear. But then one of
the above, holomorphically equivalent if c stays on the same side of line (but
even then mobius-distinct) tilings for the collinear roots can be used; so making
a preliminary mobius transformation extends method. Also note for n ≥ 4 that,
there are permutations (other than the natural orders on circle) not realized by
any circularly curved tile, e.g, if we want curved edges ±1 and ±i they will
intersect irrespective of the radiii these two circular arcs have.

− : − : −

One of the key things below is what that complex extension of the horizon,
for case |zi| = r in circular order, or hobson’s choice c means? For any cyclically
ordered n distinct complex nonzero numbers z1, z2, . . . , zn, z1 and each choice of
points on the right bisectors of the n segments zjzj+1 we have n circles passing
respectively through {zj , zj+1}. Is this hobson’s choice dictating perhaps an
extended choice of these centres for which the group acting by the n extensions
of those half-turns (composition of reflections in the bisector and the circle)
though now no longer fuchsian, is still acting discontinuously on an open subset
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of Ĉ? Or per jargon is still a kleinian group? If so, we would have an attached
automorphic, or per Poincaré’s original paper a kleinian function, extending the
full galois monodromy of the swallowtail.

− : − : −

Half-turns of � with roots zj = reiϕj about midpoints of arcs zjzj+1 normal
to |z| = R :- Let arc subtend angle 2ϕ at origin, have centre a and radius ρ; since
ρ2 = (|a|−r cosϕ)2+(r sinϕ)2 is equal to |a|2−R2 we get |a| = R2+r2

2r cos ϕ ; so zjzj+1

has a = R2+r2

|zj+zj+1|
zj+zj+1

|zj+zj+1| on the line z = tei ϕj+ϕj+1
2 = t

zj+zj+1

|zj+zj+1| through 0 and
its midpoint; the required half-turn about it is the reflection z 7→ zei(ϕj+ϕj+1)

in line followed by the reflection z−a
ρ 7→ ρ

z−a in circle; which works out to be
z 7→ (R2+r2)z−R2(zj+zj+1)

r2(z−1
j +z−1

j+1)z−(R2+r2)
=

(c2+1)z−c2(zj+zj+1)

(z−1
j +z−1

j+1)z−(c2+1)
, c = R

r .�

− : − : −

In the classical limit R → ∞ this half-turn z 7→ −z+zj+zj+1 about zj+zj+1

2

followed by z 7→ −z + zk + zk+1 about zk+zk+1

2 gives the euclidean translation
z 7→ z − zj − zj+1 + zk + zk+1. For the general relativistic case R < ∞ this
gives z 7→ [(c2+1)2−c2(zk+zk+1)(z

−1
j +z−1

j+1)]z+[(c2+1)c2(zj+zj+1−zk−zk+1)]

[(c2+1)(z−1
k +z−1

k+1−z−1
j −z−1

k+1)]z+[(c2+1)2−c2(zk+zk+1)(z
−1
j +z−1

j+1)]
, a horror,

so we’ll use another tack to understand these.

− : − : −

Even for c complex the formulas above give n involutions, viz., möbius turns
through π of the sphere Ĉ about two fixed points; so preserve all circles through
them, in particular their isometric circles having the segment joining the fixed
points as a diameter. For the seminal case |zj | = r in circular order and c real
and positive these circles pass through the pairs {zj , zj+1}, and for hobson’s
choice of c, the sum of the succesive angles between them is 2π, so they enclose
a fundamental region or a tile of a fuchsian subgroup. For any cyclic sequence
zj of n nonzero complex numbers, these isometric circles usually separate these
pairs of points, but it would seem our extended hobson’s choice of c, would
ensure the above angle sum is still 2π, but these n arcs can now intersect,
we’ll need to throw in isometric circles |dgdz | = 1 of some compositions g too, to
make a fundamental region or tile of a kleinian subgroup or tiling, with horizon
probably no worse than a closed smooth curve ? Anyway, discontinuity alone will
suffice by Poincaré averaging to still associate automorphic, i.e., meromorphic
functions periodic with respect to this group action.

Poincaré loved extended baby actions on upper half space, dihedral angles,
and fundamental polyhedrons, with above polygons their traces made in pairs on
its bottom Ĉ, e.g., a fuchsian subgroup tiles the two open disks complementing
a circular horizon. This suggests that for a fully algebraic (as against al-jabric!)
grasp of a complex horizon c, we should perhaps curl up Ĉ into a round 2-sphere,
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and seek a higher dimensional construction like the one we used to prove the
existence of a real horizon in the seminal case.

− : − : −

So, with any cyclic sequence zj of distinct nonzero complex numbers, and any
c 6= 0, comes a cyclic sequence gj of involutions z 7→ (c2+1)z−c2(zj+zj+1)

(z−1
j +z−1

j+1)z−(c2+1)
, which

switch zj and zj+1, and ∞ with their poles c2+1
z−1
j +z−1

j+1

. We note also that, any
möbius bijection switching two points is necessarily an involution, i.e., of order
two :- if z 7→ z′ switches z1 and z2 and w is a third point equality of cross ratios
gives (z−z2)(w−z1)

(z−w)(z2−z1)
= (z′−z1)(w

′−z2)
(z′−w′)(z1−z2)

, and using a mobius transformation we can
assume as well w′ = ∞ when (z−z2)(w−z1)

(z−w)(z2−z1)
= (z′−z1)

−(z1−z2)
, i.e., z′ = (z−z2)(w−z1)

(z−w) +z1

which gives ∞′ = w−z1
−1 + z1 = w.�

− : − : −

Over a real swallowtail, space of equations with all n roots real and distinct,
the covering space of all sequences of these roots has n! components, there is no
monodromy. While if we allow a root at infinity–likewise if roots are constrained
to an extended line or circle–these components reduce to (n− 1)!, closed paths
back to an equation lift to give cyclic permutations. But full galois monodromy
kicks in for equations with roots distinct and in a connected open subset of the
plane:- the two dimensional room now available allows us to easily make a path
joining any pair of equations, with any given total orders on their roots, such
that a lifted path joins these permutations.�

− : − : −

Similarly the space of all cyclic sequences zj of n distinct nonzero complex
numbers is path connected as are its open subsets obtained by deleting a subset
of codimension two or more, e.g., zj = −zj+1 for some j. It seems likely that
not only hobson’s choice of c—making angle sum 2π, i.e.,

∏
j gj = id—but

the discontinuous nature of the action generated by our n involutions gj also
spreads analytically from all |zj | = r in circular order to this huge connected
space of cyclic sequences. Discontinuity of action means it can be visualized by
a tiling of an open subset of Ĉ. The tiles which Poincaré made had piecewise
circular boundaries, soon after his method was honed to a fixed recipe using only
isometric circles of all compositions g. This strongly suggests our conjecture
because the abstract group remains the same, generated by n involutions whose
product is the identity, only its action dictated by the cyclic sequence zj and c
changes. Notably the n circular arcs, preserved by gj on which zj , zj+1 lie, can
now have other intersections, but merrily ignoring these we can build by grecian
origami a tiling too on a multi-sheeted riemann surface topologically an open
ball. We suspect our kleinian action is quasi-fuchsian, with the horizon of the
tiled open subset of Ĉ always a smooth jordan curve.
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− : − : −
Our garland of n involutions—we’ll assume all with pole—defines a garland

of n circles, the jth being that through points zj and zj+1, which are interchanged

by z 7→ (c2+1)z−c2(zj+zj+1)

(z−1
j +z−1

j+1)z−(c2+1)
, and a fixed point c2+1

z−1
j +z−1

j+1

±
√

c4−c2(zjz
−1
j+1+z−1

j+1zJ )+1

zj−1+z−1
j+1

.
Further, which of the two fixed points we take doesn’t matter, we get same circle:-
We can use a translation of C, since it keeps ∞ fixed, to first make one of the
interchanged points 0, and then a rotation and homothety, since they keep both
0 and ∞ fixed, to also make pole 1. Thus it suffices to check for z 7→ z−b

z−1
which interchanges 0 and b that these two points, and its fixed points given by
z2 − 2z + b = 0, i.e., z = 1±

√
1− b, are concyclic. Now, four complex numbers

lie on a circle of Ĉ if and only if their cross ratios are real, this because these
are möbius invariant, and we can make any circle the extended real line. Using
u for one of the square roots of 1−b our four points in order 0, 1−u, 1−u2, 1+u

have cross ratio 2u
u+u2 .

1−u2

1−u = 2, so they are concyclic.�

− : − : −

Above cross ratio 2 means in mob̈ius sense fixed points of involution still
bisect the interchanged pair of points. Like in the prototypical case when all the
zi were at the same distance r from the origin, and cyclic order was the natural
one prescribed on this circle by the complex structure. In this case the bisectors
of all zjzj+1 were concurrent, which is no longer the case; and c was the same
positive real number; if less than one all circles intersected normally a smaller
concurrent circle, and the zj appeared as the intersection away, resp. neaer from
the origin of successive circles depending on whether c was smaller or bigger than
one, if equal to 1 of course they were tamgent. Using the intermediate value
theorem we had found for given zj a unique c bigger and smaller than 1 for which
the angle sum was exactly 2π. And the hobson equation solving which this pair
of c’s could be found. Note in this seminal case the poles of the involutions,
the half-turns now, were exactly the centres of the circles, and fixed points the
antipodal pair exactly bisecting them. The hobson equation is unchanged if all
zj are multiplied by the same nonzero complex number t :- because the ratios
zj+1+zj
zj+1−zj

remain unchanged and the coefficients ek entering into this equation
remain the same.� So as we algebraically continue this pair of roots–which in
this seminal case are positive real–this invariance is to be kept in mind: the
cyclicalyl ordered sequence of distinct complex nonzero numbers zj matters
only upto a nonzero complex multiple. For the seminal case this invariance is
also clear: multplying by a positive real is a homothety, by a complex number
of absolute value one a rotation, by any a combination–a spiralling homothety.
For the general case when almost all the intuitive ingredients of this picture
evaporate, only the enigmatic hobson’s equation with continuation into C of
the seminal rea root pairs is teasing us, we want an associated equally lucid
picture. A garland of circles with poles of associated involutions prescribed by
the same complex number c is our tentive in this direction. Note that now as
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in the seminal case multiplying all zj by same t multiplies poles too by that
t, and the involutions just change as prescribed by this piralling homothety.
This blown up garland has same angle sum. An example of a non-garland is
provided by a non trivial euclidean translation of the seminal garlands. for we
can’t obviously find a constant complex number C such that C2+1

zj+1+a−1+(zj+a)−1

equals C2+1
zj+1

−1+(zj)−1 + a for all j when the translation a is nonzero.

− : − : −

The angle of (zj−1−zj)
2

(zj+1−zj)2
.
c2−z−1

j zj+1

c2−z−1
j+1zj

.
c2−z−1

j−1zj

c2−z−1
j zj−1

equals twice the angle at the
corner zj of our garland :- The latter angle, between the jth and (j−1)th circle at
zj , equals that at their other intersection z∗j , which after z 7→ 1

z−zj
becomes the

angle between two lines through 1
z∗
j −zj

. If pz−b
z−p denotes the jth involution after

z 7→ z − zj , then p = c2+1
z−1
j +z−1

j+1

− zj is the translated pole, 0 and b
p = zj+1 − zj

are interchanged, while the fixed points, the roots of z2 − 2pz + b = 0, are
now p ±

√
p2 − b. Their reciprocals 1

p±
√

p2−b
have mid-point p

b = 1
zj+1−zj

,

and their difference −2
√

p2−b

b , so
√

p2−b

b , gives direction of this line. Its square
p2−b
b2 = p

b [
p
b −

1
p ] =

1
zj+1−zj

[ 1
zj+1−zj

− z−1
j +z−1

j+1

c2+1−zj(z
−1
j +z−1

j+1)
] = 1

(zj+1−zj)2
.
c2−z−1

j zj+1

c2−z−1
j+1zj

.
The displayed complex number is this, divided by its analogue for the second
line, for which we only need to replace zj+1 by zj−1.�

Corollary: the angle of
∏

j

c2−z−1
j zj+1

c2−z−1
j+1zj

equals the sum of the angles of our
garland :- for its square is the product of the above n numbers.�

− : − : −

The product above equals
∏

j
pj−zj+1

pj−zj
=

∏
j

zj−pj−1

zj−pj
where pj denotes the pole

of the jth involution :- use pj = c2+1
z−1
j +z−1

j+1

.� Hence, its absolute value gives us the
alternating product of segments

∏
j

pjzj+1

zjpj
, and we see, the sum of the angles of

a garland coincides with the cyclic angle sums
∑

j ∠zjpjzj+1 =
∑

j ∠pjzjpj−1:-
use pj−zj+1

pj−zj
=

pjzj+1

zjpj
ei∠zjpjzj+1 , etc.� For the case all |zj | = r in circular order,

each ∠pjzjpj−1 is equal to the angle of the garland at zj , because poles were
now the centers, and radii are normal to tangents : this equality of individual
angles is not valid in general, only their cyclic sums coincide.

− : − : −

Hence, the sum of the angles of our garland is a multiple of 2π if and only if
tan(

∑
j

1
2i log c2−z−1

j zj+1

c2−z−1
j+1zj

) = 0 :- half the angle of
∏

j

c2−z−1
j zj+1

c2−z−1
j+1zj

equals the real
part of its 1

2i log, and is a multiple of π if and only if its tan is zero, but complex
tangent function has only real zeros.�
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Further, the above equation can be rewritten as a polynomial equation for the
unknown c2 ∈ C with coefficients depending on the successive ratios uj =

zj+1

zj

of the cyclic sequence zj, which, for the case all |zj | = r in circular order, must
coincide with the equation we had obtained before :- tan( 1

2i logw) = i 1−w
1+w gives

tan( 1
2i log c2−z−1

j zj+1

c2−z−1
j+1zj

) = i z−1
j zj+1−z−1

j+1zj

2c2−z−1
j zj+1−z−1

j+1zj
:= Qj say, so the addition formula

for tan makes our equation
∑

m(−1)mE2m+1(Qj) = 0 where Et(·) denotes the
degree t elementary symmetric function of n quantities. Note Qj 6= 0 iff uj 6= ±1
and Q−1

j is of degree 1 in c2. Multiplying by
∏

j Q
−1
j gives a polynomial equation∑

m(−1)mEn−2m−1(Q
−1
j ) = 0 of degree less than n in the unknown c2. For the

case all |zj | = r in circular order, it must coincide with the equation before,
because it has the same roots.�

− : − : −

Let’s review the case all |zj | = r in circular order, when poles are centers, so
radii zjpj and zjpj−1 are normal to the tangents to the jth and (j−1)th circles
at zj , so angle of the garland at zj equals ∠pj−1zjpj , i.e., the angle of pj−zj

pj−1−zj
.

We had essentially calculated this before as the angle from zjpj−1 to the ray
from origin through zj followed by the angle from this ray to zjpj , i.e., angle
of zj

pj−1−zj
plus angle of pj−zj

zj
. With reference to that figure the latter angle is

90◦ − θj , so tan θj is equal to the cotangent of the angle of pj−zj
zj

=
c2−z−1

j+1zj

1+z−1
j+1zj

=

c2−e−iϕ

1+e−iϕ = c2−cos ϕ+i sin ϕ
1+cos ϕ−i sin ϕ = (c2−1)(1+cos ϕ)+i(c2+1) sinϕ

1+cos ϕ where ϕ = ϕj+1−ϕj is the
angle between the consecutive points zj and zj+1 on |z| = r. So this number’s
real part divided by imaginary part gives tan θj =

c2−1
c2+1 .

1+cos ϕ
sin ϕ = c2−1

c2+1 . cot ϕ
2 as

before, then we observed cot ϕj+1−ϕj

2 = i zj+1+zj
zj+1−zj

, etc., resulting in an equation
that the positive real number c2 satisfied if and only if the angle sum of this
seminal garland was a multiple of π.

− : − : −

Addition formula gives tan of ∠pj−1zjpj , the sum of two angles with tangent
i c2−1
c2+1 .

uj−1+1
1−uj−1

and i c2−1
c2+1 .

uj+1
uj−1 , in the special case. In general tan 1

2 (∠pj−1zjpj −
i log zjpj

zjpj−1
) = tan 1

2i log( zjpj

zjpj−1
ei∠pj−1zjpj ) = tan 1

2i log( pj−zj
pj−1−zj

) = i pj−1−pj

pj−1+pj−2zj
,

which gives tan(∠pj−1zjpj − i log zjpj

zjpj−1
), tally the two calculations.

− : − : −

The question arises if complexification of the equation before tallies with the
general equation derived above that the complex number c2 satisfies if and only
if the angle sum—of a garland with zj any cyclic sequence of distinct nonzero
complex numbers—is a multiple of π? We were before confined to very special
sequences zj , viz., with the bisectors of segments zjzj+1 all going through the
origin, i.e., the subspace of all cyclic sequences defined by the n − 1 equations
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|z1| = |z2| = · · · = |zn|. That derivation—reviewed above—had invoked these
conditions, resulting perhaps in some cancellation which made the coefficients
of the powers of c2 in the actual equation very special; continuing to use these
special forms as coefficients off this subspace seems to be not on, so the answer
to the question above seems more likely to be no ...

Anyway, let’s examine a bit more this, complexification of the equation before∑
m(−1)mE2m+1(i c

2−1
c2+1 .

uj+1
uj−1 ) = 0, i.e., since all (−1)m(i)2m+1 being nonzero

and equal cancel out,
∑

m E2m+1(
c2−1
c2+1 .

uj+1
uj−1 ) = 0, and which on multiplying by∏

j
c2+1
uj+1 becomes

∑
m E2m+1;n−2m−1(

c2−1
uj−1 ;

c2+1
uj+1 ) = 0 where Eu;v(· ; ·) means

the sum of all products for u indices of quantities of the first type and for v
other indices quantities of the second type.

As against, the derived general equation
∑

m(−1)mEn−2m−1(Q
−1
j ) = 0, i.e.,

likewise,
∑

m En−2m−1(
2c2−uj−u−1

j

uj−u−1
j

) = 0, but 2c2uj−u2
j−1

u2
j−1

= c2−1
uj−1 + c2+1

uj+1 − 1, so

the same as
∑

m En−2m−1(
c2−1
uj−1 + c2+1

uj+1 − 1) = 0, so hmm ...

− : − : −

Indeed, the complexification of the equation before is equivalent to the derived
general equation :- For all |zj | = r in circular order, poles pi being the centers,∑

m E2m+1(
c2−1
c2+1 .

uj+1
uj−1 ) = 0 says

∑
j ∠pj−1zjpj , the angle of

∏
j

zj−pj−1

zj−pj
, is a

multiple of 2π, i.e., since this cyclic product can be rewritten
∏

j
pj−zj+1

pj−zj
, that∑

j ∠zjpjzj+1 is a multiple of 2π. Referring again to the figure we see a triangle
with external angle 90◦ − θ = 1

2∠zjpjzj+1 + ϕ
2 , sum of its two other internal

angles, so tan 1
2∠zjpjzj+1 =

tan(90◦− θ)−tan(ϕ
2 )

1+tan(90◦− θ) tan(ϕ
2 )

, but tan(90◦−θ) = c2+1
c2−1 tan(ϕ2 )

and tan(ϕ2 ) =
1
i
uj−1
uj+1 , which gives tan 1

2∠zjpjzj+1 =
−2i(u2

j−1)

(c2−1)(uj+1)2−(c2+1)(uj−1)2 =

−i u2
j−1

2c2uj−u2
j−1

, etc., to put the equation before for this special case in the exact
same form as the derived general equation.�

In retrospect the key step which almost ensured this minor miracle was just
writing cot ϕj+1−ϕj

2 = i zj+1+zj
zj+1−zj

since the right side now made sense even off the
subset defined by the real equations |z1| = |z2| = · · · = |zn|.

− : − : −

We recall our construction for making a circular arc ÂB less and less convex
with chord AB as limit : let the given ÂB be on the southerly latitude of radius
r of a varying round sphere of radius R ≥ r; if R = r the arc is equatorial, but
if R > r the unique great circle through A and B cuts their latitude only in
these two points; and its part to the south, projected from the north pole on the
plane of our latitude, is the required less and less convex circular arc tending to
the chord AB as R → ∞.

This projection (being a restriction of the inversion of R̂3 in the sphere with
centre north pole passing through our latitude) is angle preserving. So now the
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(acute) angle θ, between the tangent at A (or B) of our varying circular arc and
the radius, is equal to the angle at A between its longitude and the great circle
through A and B. Using coordinates in which sphere is x2 + y2 + z2 = R2 with
poles (0, 0,±R), its tangent plane at A = (x0, y0, z0) is x0x+y0y+z0z = R2, the
longitude of A lies on the plane −y0x+x0y = 0, and the great circle through A
and B = (x1, y1, z1)—here z1 = z0 because points are on same latitude—lies on
(y0z1 − z0y1)x+(z0x1 −x0z1)y+(x0y1 − y0x1)z = 0. So θ is the angle between
the lines tangent to the sphere at A in these two planes.

Rotating the x and y axes we make y0 = 0, and consider the lines through
the origin parallel to these two lines, i.e., x0x+ z0z = 0, y = 0 and x0x+ z0z =
0,−z0y1x+ (z0x1 − x0z0)y + x0y1z = 0, i.e., x = z0t, y = 0, z = −x0t and x =

z0t, y =
z2
0y1+x2

0y1

z0x1−x0z0
t, z = −x0t. For t = 1 these vectors have dot product z20+x2

0 =

R2 and lengths R and
√

R2 +
R4y2

1

z2
0(x1−x0)2

, which gives sec2 θ = 1 +
R2y2

1

z2
0(x1−x0)2

,

so tan2 θ =
R2y2

1

z2
0(x1−x0)2

= R2

R2−r2 cot2 ϕ
2 , where again ϕ is angle subtended by the

chord AB at the centre of the circle of radius r. So tan θ =
√

R2

R2−r2 cot ϕ
2 , much

like before, except the first factor is different.

− : − : −

The plan below is to associate functions to angle sum 2π garlands—their
existence for each cyclic sequence of distinct nonzero complex numbers zj is
now established because of FTA applied to hobson’s equation—preserved by all
n involutions or else only by the index two subgroup of their even compositions.
This takes us beyond the complex baby group, similarities of Ĉ, these functions
only preserve similarity of the smallest planar parts, e.g., the absolute value of
the quotient of planar infinitesimals, their complex derivative, is the change of
scale of infinitesimal figures. Poincaré’s original averaging construction of these
periodic - with respect to the group of all compositions of gj or its index two
subgroup - functions is still the simplest, their domain being a simply connected
open subset of Ĉ on which these groups act discontinuously. Dividing it by the
smaller group gives a covering of a surface of genus jumping by one as n jumps
by two. Everything varying continuously as � varies over the swallowtail, but
the varying domain of definition of this varying periodic or automorphic function
can be crazy, which is what enables us to get all possible permutations of roots
à la Galois. Indeed as he saw it, not in the definition theorem corollary dry
manner of texts today, though granted this formal analysis has its upsides and
has given natural generalizations too. For the seminal case all |zj | = r in circular
order, the fundamental region or tile bounded by the isometric circles |dgjdz | = 1
is the same as that by the n arcs zjzj+1, and iterating under the group action
gives a tiling fading away to that circular horizon of radius a real positive c. This
fuchsian action becomes more and more crazy or kleinian as we go off-broadway
so to speak, but all the paraphernalia we have mentioned carries along at least
continuously for all cyclic sequences zj .

− : − : −
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Poincaré averaged rational functions R over a complex baby subgroup G thus,∑
g∈G R(g(z))(dgdz )

m := Θ(z) wherever the sum makes meromorphic sense : see
his very first note on this subject—tome 2 of his Oeuvres—which appeared on
Valentine’s Day of 1881. Since Θ(g(z)) = (dgdz )

−mΘ(z) the quotients F of these
theta functions of G of order m gave him oodles of functions fully periodic with
respect to the baby subgroup : F (g(z)) = F (z) ∀g ∈ G.

Poincaré called a subgroup represented by a tiling of an open disk fuchsian,
classified them all (!) and proved thetas meromorphic in the open disk and the
complement in Ĉ of its closure; then the much bigger class of baby subgroups G
that can be seen as tilings of any open planar subset Ω, using now the adjective
kleinian, showed his averaging made meromorphic sense in this open subset,
and almost classified (!!) all such groups too.

For us G will be the baby subgroup generated by the involutions gj of the
angle sum 2π garland of some cyclic sequence � of n nonzero distinct complex
numbers zj (or its index two subgroup of even compositions). Note the abstract
group is always the same, but this ‘action’ G(�) depends hugely on the cyclic
sequence. When all |zj | = r in circular order we know it is fuchsian, and for the
moment we’ll just assume it is always kleinian.

− : − : −

Any kleinian subgroup G equips the open planar halo Ω, till whose horizon
any tiling representing it is seen to fade away, with a geometry relativistic in the
sense of PG&R (2013). Indeed, if all |zj | = 1 in circular order, the halo of our G
is concentric of radius c > 1, and a radial homeomorphism keeping horizon fixed
makes it the open disk geometry of that paper, so imho, our hobson’s choice
c complexifies speed of light to tackle the general case of any cyclic sequence
of distinct nonzero numbers! Otoh, hobson’s choice c seems an intimate of the
theta constants of Riemann (1857)! We recall that this masterly memoir lies
on a thread, after Abel and Jacobi, going back to Legendre’s discovery of a
charming discrete ambiguity in hyperelliptic line integrals. Galois too, after
his definitive analysis of Lagrange’s review of available algebraic methods, was
thinking on similar lines when his life was cut short, as Jordan’s exposition of
galois monodromy clearly points out, so that cryptic theorem on page 380 of his
Traité (1870) also ties into this thread, and a formula just derived by Thomae
from Riemann’s memoir made this explicit.

− : − : −

Next on agenda : for any cyclic zj , and its c, involutions gj and G, if R =
xxx then kleinian function xxx solves the differential equation xxx, i.e., inverts
the hyperelliptic 1-form xxx whose periods, i.e., values over all closed paths of
surface xxx, depend only on the coefficients of �; so, but for the ambiguity of
the branched double cover xxx, in Jordan’s parlance bissection des racines, this
is a method for exactly solving any � (which has little to do with the well-known
methods for numerically solving a given � to any accuracy).

− : − : −
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The ‘Four Half Turns’ tilings and Jacobi’s elliptic functions make the lowest
degree four case of the above :- because now c = ∞ for any |zj | = r in circular
order, so its extension hobson’s choice c is also this constant, and cyclic order is
unimportant : the elliptic function having zeros at vertices of these quadrilateral
tiles, and simple poles at the intersections of their diagonals, inverts the elliptic
integral

∫
dz√
f(z)

where the four roots of f(z) = 0 are the values of the function
at the midpoints of the tiles.�

− : − : −

Hyperelliptic integrals
∫

zidz√
f(z)

are also what go into Umemura’s general
recipe; a standard basis of their periods can be found using just the coefficients
provided we have separated the unknown roots enough and put them into any
order x1, x2, . . .; then a matrix of periods is defined using this data, and viewed
as a point in a higher dimensional analogue of the half plane; and a theta
function built to operate on it outputs the ratio x1−x3

x1−x2
.

The sufficiently separated roots x1, . . . , xn of � are fixed by all ratios xi−xj

xi−xk
:-

Since xi−xj

xl−xk
=

xi−xj

xi−xk
× xi−xk

xl−xk
, we know any xi − xj as a multiple of x1 − x2.

Also we know which square root
√
∆ of the discriminant of � is

∏
i<j(xi − xj)

if roots are sufficiently separated. So
√
∆ is a constant times a (x1 − x2)

N , so
x1 −x2 is known by honing separation further if need be. Which determines all
xi precisely, because from � we can read the root-sum.�

This shows we can avoid adding some known roots before using above theta;
also we recall that even the periods

∮
dz
f(z) are interesting.

− : − : −

The roots of � as values of an automorphic function on fixed points of the
involutions gj recalls again the isometric circles |dgdz | = 1, for involutions the
circles having segments joining their fixed points as diameters; and a probable
canonical tiling of the halo Ω(�) using isometrical circles of all g ∈ G(�) which
follows the galois monodromy of the roots; but to understand our complexified
speed of light c(�) more maybe we should curl up all of Ĉ into the boundary of
the open unit 3-ball and look at tilings by curved polyhedra having vertices on
boundary and a dihedral angle sum 2π.

− : − : −

The mere fact that Abel and Jacobi preferred to view some multiple-valued
line integrals of Legendre in the opposite direction as single valued functions with
periods was (imho) no big deal. Indeed soon Riemann (1851,57) was looking
again at periods as values of indefinite integrals, i.e., differential 1-forms, on
closed paths of the graph of their finite-valued integrand, and showed how they
tied to the topology of this riemann surface. Later Poincaré (1895) similarly
used ambiguities of multiple integrals to define what much later was reborn
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again as the de Rham cohomology of any smooth manifold.

− : − : −

From the point of view of just calculating integrals, that glue he used to make
a single riemann surface from some sheets of paper cut à la Cauchy does not add
much, so to many the totally new thing in his 1851 thesis was only its blemished
part, an extravagant appeal to a principle of Dirichlet to obtain the riemann
mapping theorem. However, in the lectures on which his 1857 memoir was based,
Riemann completely disengaged his surfaces from the plane, in particular, he
often deemed Ĉ via stereography as a round 2-sphere in 3-space. Spherically
curved polytopes with vertices on a round d-sphere and facets perpendicular to
a concentric sphere are interesting even for d > 1. Also we note that, for any
two points zj and zj+1 on a round 2-sphere, there is a circle’s worth of 2-spheres
passing through them and perpendicular to a given concentric 2-sphere, which
might be the key to a better understanding of hobson’s choice, or complexified
speed of light c, determined by any cyclic sequence zj .

− : − : −

Were I to teach a course on complex analysis today, I would use as text
Briot and Bouquet’s beautiful book of 1859. All the standard material needed
for the conceptual core of the theory of doubly periodic meromorphic functions is
developed, besides no modern text can quite convey the freshness of learning all
this while its creators, Cauchy and Liouville—the elegance of this book probably
reflects that of some lectures of the latter the two authors had attended some
years before and taken notes of—were still around.

− : − : −

Mumford’s Tata II (1984) has Umemura on pp. 3.261-3.272, using a formula
of Thomae (1869), reproved on its pp. 3.120-3.136, making the theorem on page
380 of Jordan’s Traité (1870)—which shows any equation can be solved using
periods of hyperelliptic integrals and modular functions—more explicit. To wit
he gives, for any odd degree equation with roots xi separated into any order,
a formula for x1−x3

x1−x2
in terms of a matrix of periods acted on by a formidable

theta function. So, applied to the associated equation of degree n two or three
more with x1 = 0, x2 = 1 or x1 = 0, x2 = 1, xn = 2, a formula for a root x3

of any equation. Of the remarks which follow the third, alas too brief, is more
conceptual and evokes the galois theory of Jordan.

− : − : −

Jordan in the preface of Traité (1870) ties it to “les OEuvres de Galois, dont
tout ceci n’est qu’un Commentaire” and dwells on Galois’s ideas on division of
transcendental functions – Gauss worked on constructibility of regular polygons,
i.e., dividing a circular arc, Abel on dividing elliptical arcs – which yield that
theorem on page 380 in Livre III of this treatise. A quick recap of congruences
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is Livre I, then the much longer Livre II on groups of permutations and linear
substitutions. But the key definition of Galois, the monodromy of the roots—
covering spaces, the natural home of normal subgroups, are almost explicit in
it—comes in Livre III, which soon turns into a review of known transcendental
methods for solving equations, and stumbles all of a sudden near its end on that
decisive theorem on page 380. The strict subset called galois theory today comes
mostly later in Livre IV, as it logically should, since it deals with obstruction
theoretic problems, solvability by radicals, etc.

− : 20201225 → : −

K S Sarkaria
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