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Summary. We prove that an n-dimensional simplicial complex can unknot in R***! only if it has
an (n—1)-simplex which is incident to less than 3(n+1) n-simplices.

Introduction. A (finite) simplicial complex K will be said to unknot in
a piecewise linear (p.l.) space Y if any two homotopic p.l. embeddings of
X =|K| in Y are isotopic.

THEOREM (2.24). An n-dimensional simplicial complex K" unknots in
2n + I-dimensional space R**** only if it has an n— 1-simplex which is incident to
less than 3(n+1) n-simplices.

We conjecture that a conclusion similar to that of above theorem is valid also
under the hypothesis that the n-dimensional simplicial complex K" p.l. embeds
in 2n-space R*". For n =1 this is a well-known result of chromatic graph
theory going back at least to Heawood [3].

An immediate consequence (2.2.5) of the above theorem is that if K
unknots in R***' then 3(n+ 1) colours can be assigned to the n— |-simplices of

| K™ in such a way that not all the faces of an n-simplex have the same colour.
Similarly, the conjecture made above implies a similar chromatic conclusion for
2 K" embeddable in R*". ‘

For examples of n-dimensional polyhedra which unknot in 2n+ 1-dimen-
sional Euclidean space see Husch [4]. There it is also shown that given any
n-dimensional polyhedron X", n > 2, one can find another, which has the same
Simple homotopy type as X, and which unknots in R*"*!,

2. Unknotting and colouring,

(2.1) Each embedding ¢: X —+R™ gives rise to a map @*: X*—8§""!
define by
p(xy)—o(x,)

@ (xl' K:] = %’(p(xﬂ—fP[xz]”‘

e b= W |



Here X* denotes the deleted Cartesian product of X, i.e. all points (x4, x,)0f
X x X such that x; # x,; and $"~' denotes the unit sphere of the Euclidean
-space R"™. We equip X* (resp. S™ ') with the free Z, action given by the fixed
‘point free involution (x,, X)X, x;) — (resp. x+— —x). We note that o* is
equivariant, i.e. commutes with these involutions. Also note that if ®y 1s isotopic
to @, via the isotopy @,, 0 <t <1, then ®3 is homotopic to ¥ via the
homotopy of equivariant maps @*.

(2.L.1) If 2m > 3(n+1), then prsp* sets up a bijective correspondence
between isotopy classes of embeddings of X" in R™ and equivariant homotopy
classes of equivariant maps X*—S§m=1.

This is Weber's classification theorem. (See [9], Th.l and Th.l'). An
analogous classification theorem is valid. under the same dimensional restric-
tions, also in the smooth category. This had been established earlier by
Haefliger [2].

Each Z, space E associates to the two-fold covering space X* — X*/Z,
a fibre bundle X*x , E— X*/Z, with fibre E: X*x,,E is the quotient of
X* x E under the diagonal Z, action, and the projection map is defined by
[(xy, x5), e]=[x,, x,]. For example, we have the m—l-sphere bundle
X* x 5.8" " and the associated bundle of integer coefficients X* x 2. =4S Y.
Here the Z, action on $™ ! and Tm-1(8™" ') is induced by the antipodal
involution. The isomorphism class of the bundle of coefficients depends only on
the parity of m—1. For m— 1 even we denote it by Z and for m—1 odd one has
the trivial bundle Z.

(2.1.2) If dim X < n the equivariant maps X* -S> are in bijective correspon-
dence with the elements of the cohomology group H*%X/Z,; 2).

As Conner and Floyd (p. 419, [1]) point out this follows immediately from
the following two facts:

(a) There is a bijective correspondence between equivariant maps (resp.

. . g ; @ _ .
equivariant homotopy classes of equivariant maps) X*-S™"! and sections

(resp. homotopy classes of sections) X* ’Zz—iX* X z,8™~ ! of the m— l-sphere
bundle X*x, S"~!' — one defines @([xy, x50) = [(x;, X3), @*(x4, X1)]

(b) Steenrod’s bundle-theoretic generalization of the Hopf classification
theorem (see [7], §37.5, p. 186): This tells us that the homotopy classes of
sections of the 2n-sphere bundle are in bijective correspondence with the
cohomology group H?*"(X*/Z,; 7). _

(2.1.3) X" n > 2, unknots in R*"*' iff H*(X*/Z,:Z) =0 and thus only if
H,(X*/Z,; Z,) = 0.

The first part follows immediately from (2.1.1) and (2.1.2).

The short exact sequence of bundle maps 0—Z = ZX*Z,xZ, "20
gives a short exact sequence of cochain complexes 0—C*X*'Z,. Z)
—C*(X*Z,: Z)—~C*(X*/Z,; Z,)—0. The induced long exact cohomology .
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sequence furnishes us with a surjection HAX®T 2)—»H1"(X*"Z:: Z,).
Thus H*"(X*/Z,;Z) =0 only if H*"(X*/Z,; Z,)=H,,(X*Z,;Z,) =0.

(2.2) We associate to each simplicial complex K the cell complex K*
consisting of all cells 6” x &, 7?c K. e K. P (0 = @. We denote the space
K| of K by X. The involution of X* preserves the subspace |[K*| < x*,
mapping each cell % x 6° onto * x ¢°. Identifying 6% x 0° and €° x o7 under this
involution we get a cell [¢” x 0°] = X* Z,; these cells constitute a cell complex
K%Z,.

(2.2.1) |K*| (resp. |[K*/Z,|) is a deformation retract of X* (resp. X*'Z,)

This simple lemma occurs in van Kampen [8] (or see Shapiro [6], Lemma
2.1, or Wu [10], Ch. 1).

If o is an i-cell of a cell complex L. 7.(0) will denote the number of
i+1-cells of L which are incident to 7. We put d,(L) = inf{5,(0)|ce L,
dimeo = i}.

(2.2.2) For any n-dimensional simplicial complex K with 6,_ (K)=n+1.
On-1(K) 2 050 (K*) = 63,1 (K*/Z,) > 6, (K)—n—1.

A 2n-cell of K* (resp. K*/Z,) is incident to the 2n— 1-cell ¢~ ! x 0" or " x g1
(resp. [¢"™! x 6"]), here 0"~ ‘e K, "c K. "c K. "~ ' A 0" = @, iff it is of the
type {"x 0" or 0"x " (resp. [£"x 0"]) where "eK, " lcé Prnt =0,
Moreover, since 0" has n+ | vertices. out of all n-simplices " 2 ¢" ! there can
be at most n+1 which are not disjoint from 6". Thus we have

Ox(0"™") = Oge(0” L X 0%) = 54e(0" x 6"~ 1)
= Oxzy([0" ' % 0") = 6, (6" ) —n—1.

This implies the required result provided that K is such that for each 6"~ ' € K one
can find a #"eK disjoint from ¢!,

If K has an n— I-simplex ¢" ! which meets every n-simplex ("< K, then we
must have o,(7"~ ') < n for any n— I-simplex "~ ! with card (y ~ o) least. This
follows because the new vertex. of any n-simplex which is incident to n"~ ', must
belong to ¢"~!. Thus 9,-1(K) < n and the result follows.

(2.2.3) For any n-dimensional simplicial complex K with H,,(K i) =10
one has 9, ,(K) < 3(n+1).

By (2.2.2) it suffices to prove O2n—1(K*/Z,) < 2(n+1). Also we can assume
that K*/Z, has at least one 2n— I-cell: otherwise we have in fact J,_ (K) < n
45 in the proof of (2.2.2).

We note that dim C(K*/Z,; Z,) = number of i-cells of K*/Z,. Since each
In-cell [o" x 0"] of K*/Z, has precisely 2(n+1) incident 2n— I-cells, namely
those of type [E""'x07, &' <o and [o"x T, e 0 it follows
that riz,,_,(K“‘-’Zz}. dimC,,-(K*/Z,; Z,) is less than or equal to 2(n+1).
dim Con(K*/Z,:Z,). Thisin turn s less than 2(n+1)dimC,,_,(K*/Z,; Z,) because.
under the given hypotheses H,,(K*/Z,; Z,) =0 and dimC,,-(K*/Z,; Z,)

-

= 1. the mod 2 boundary map ¢: Con(K*/Zy: Z,y) = Cyp  (K*/Z,: Z,) is
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injective and its image is a Proper subspace of Cona (K */1Z,; Z,). So we get the
required estimate 62,,_1(1("';’22) <(n+1).

(2249 I1f simplicial complex K" unknots in Euclidean 2n + l-space R*"* 1 then
On-1(K) < 3(n+ 1).

Forn = 1 one has in fact do(K') = 1 because K! unknots in R iff it has not
loops, ie. iff it is a disjoint union of trees.

For n> 2, (2.1.3), (2.2.1) and (2.2.3) yield the above result.

As in [5] we define the i-th chromatic number of K as the least number of
colours that can be assigned to the i-simplices of K in such a way that not all
the i-faces of any i+ l-simplex have the same colour, We denote this number by
¢ (K).

(2.2.5) If K" unknots in R*™* 1 thopn Ca-1(K") < 3(n+1).

To see this we observe that if K» unknots in R2"+1 g, does any subcomplex
L". By (2.2.4) we can finda "1 gpn incident to less than In+1) n-simplices of
L'. Thus any good colouring of L—Stina”"~! cap be extended to a good
colouring of I Proceeding step by step we can colour all of K" in the requisite
way. For n=1 one has in fact cy(K!) = 2.
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