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ABSTRACT 

Given a simplicial  complex A on vertices { 1 , . . .  , n}  and  a field F we 

consider  the  subvar ie ty  of project ive (n  - 1)-space over F consis t ing  of 

poin ts  whose homogeneous  coordinates  have suppor t  in A We give a 

s imple  ra t ional  express ion for the  ze ta  funct ion of th is  s ingular  project ive 

variety over Fq and  show a close connect ion wi th  the  Bet t i  n u m b e r s  of 

the  cor responding  variety over C. Th i s  connect ion is par t icular ly  s imple  

in the  case when  A is Cohen-Macau lay .  

1. I n t r o d u c t i o n  

Let A be a simplicial complex on vertex set {1, . . . ,  n} and for any given field F 

let V(A, F) be the set of points in F P  '~-1 (projective ( n -  1)-space over F) whose 

support (set of nonzero coordinate positions) belongs to A. This is a projective 

variety, being the union of linear subspaces. By the zeta  funct ion of A over a 

Received April 2, 1996 and in revised form September 17, 1996 

29 



30 A. BJORNER AND K. S. SARKARIA Isr. J. Math. 

finite field Fq we will mean the zeta function of this variety in the standard sense 

of algebraic geometry, namely 

In this paper we will compute a simple rational expression for Z~(q,t), which 

via the work of Ziegler and Zivaljevid [12] shows that the zeta function has inti- 

mate connections with the singular homology of the complex projective variety 

V(A, C). In fact, the filtration of the space IIAI[ by the coskeleta of A provides 

Betti numbers that determine both the rational function Z/,(q, t) and the Betti 

numbers of V(A, C). 

One possible interest in these observations lies in the fact that the varieties 

V(A, F)  are highly singular, so that available theory does not seem to be able to 

predict such a precise connection between counting over finite fields and topology 

over C. As is well known, in the case of nonsingular projective varieties the Weil 

conjectures [2, 4] give very detailed information of this sort. 

In the nonsingular case it follows from the Deligne-Grothendieck-Weil 

theorem that the Betti numbers of the complex variety are determined by the 

zeta function. This is not in general true for the simplicial complex varieties 

V(A, C) considered here, but we will show a tight connection in the important 

case of Cohen Macaulay complexes. 

Another possible interest in this work is for potential use in f-vector  theory. 

As we remark in Section 4 all questions about f-vectors of Cohen-Macaulay com- 

plexes can be translated into questions about Betti numbers of the corresponding 

varieties. This is reminiscent of the situation for polytopes and toric varieties, see 

[9], although the varieties V(A, C) unfortunately lack many of the good special 

properties of toric varieties. 

2. T h e  basic resu l t s  

We will assume familiarity with the basic combinatorial and topological 

properties of (abstract) simplicial complexes; see Munkres [5] for this material. 

Throughout  the paper A will be a simplicial complex of dimension d on vertex 

set { 1 , . . . , n } .  The f - v e c t o r  of A is f (A)  ---- (f0, f l , . . . , f d ) ,  where f j  is the 
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number of j-dimensional faces. Let 

d 

(1) f]:= Z(-l) i-JG)fi  , for j  = 0 , . . . , d ,  

and call f*(A)  = (f~, f~ . . . .  , f~) the f * - v e c t o r  of A. The relation (1) can be 

inverted, 
d 

Z =  3 

The c o s k e l e t o n  AkJ is defined by A >-j = {o E A : d imo  >_ j}. We think 

of A ->j as a simplicial complex by passing to its "order complex", i.e., the faces 

o f  A >-j are the chains 00 C o1 C ' ' "  C (7 s with ai E A >-j. From this point of 

view A ->~ is the barycentric subdivision of A, so the chain of inclusions A kd C 

A ->(d-l) C . . - C  A >~ gives a filtration of the space IIAII- IIA -~ 
LEMMA 2.1: f ]  = X ( A - > J ) , f o r j = 0 , . . . , d .  

Proof'. The computation is most easily done using the theory of M6bius 

functions, see [10, Chap. 3]. Let P = A >--j U {0, i}, the poset of faces of A of 

dimension > j augmented by a top and a bottom element, and let # be its MSbius 

function. By Hall's theorem [10, p. 120] we have 

(3) X(A->j) = # ( 0 ,  i ) + l .  

If d imo = i (j < i _< d) then P<~ = {~- ~ PIT < 0} is a lower-truncated Boolean 

algebra (all subsets of size > j + 1 in an (i + 1)-set), so # ((), o) = ( -1 )  i - j -1  (~). 

Hence 
d 

( 0 , 1 ) : - E # ( 0 ,  o) = - l + ~ f i ( - i )  i-j(~), # 

which with (1) and (3) proves the result. | 

The zeta function of A over Fq (the finite field of order q) was defined in the 

introduction. In the following we suppress the prime power q from the notation. 

It follows from the work of Dwork [3] that ZA(t) is a rational function. In fact, 

it has the following explicit form. 

THEOREM 2.2: 
d 

1 ZA(t) l - I  

1 1  o= (1 - qJt) ; 
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Proof." The points x = ( x l , . . . ,Xn)  on the projective variety V(A,  Fq~) are 

partitioned by their supports {i : xi # 0} E A. If dim a = i then there are clearly 

(qk _ 1) i points with support equal to a (each of the i + 1 nonzero positions can 

be filled in qk _ 1 ways and then we must divide by qk _ 1 to account for projective 

equivalence). Hence, 

E cardV(A, Fqk)~ = E 
k>l k>~ 

d . tl c 
E fi (qk _ 1)' ~- 
i=0 

k 
k>l  i=0 j=0  

d d 

----- E ( - - ] )  i - j  l i  
k 

j=0  k>l  i=j 
d 

= E f~ E (qjt)k 
k j=o k_>l 

d 
1 

= E f ;  l~ 1 - q ' t  
j=0  

= log | 
j=o (1 - qJt) f; " 

The following formula for the singular homology of the complex projective 

variety V(A,C) is due to Ziegler and Zivaljevi6 [12, Proposition 2.15]. There is 

a misprint in the original formulation; for a correction and additional discussion 

see [11, Corollary 6.7]. 

THEOREM 2.3 (Ziegler and Zivaljevid): 

d 

Hi(V(A,  C); Z) TM @ Hi-2j (A>/; Z) .  
j=O 

Thus, the Betti numbers of the coskeleta A ->j determine, on the one hand, the 

Betti numbers of V(A, C) and, on the other, the zeta function of A. 

COROLLARY 2.4: x(V(A,r  = fo. 
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With the obvious choice of notation (see definition (5) below) we have 

2d 2d d 
i >_j x(V(A,C))  = E ( - 1 ) i ~ / c =  E E ( - 1 ) / ~ - 2 j  

i=0 i=0 j=0  

d d 

= Ex(A -J)= E : ; - -  :o 
j=0  j=O 

For the last equality see (2). | 

We will end this section with an informal description of what the varieties 

V(A, F) "look like". The discussion will use the complex field F = C for the 

relevant geometric visualization but it is in principle completely general. 

As a first small example let us take for A the boundary of a 2-simplex, i.e. 

A has 3 vertices and 3 edges. Then V(A,C) is homeomorphic to the union of 

three touching billiard balls (surface only). The i-th ball is the set of projective 

points (Zl, z2, z3) with z~ = 0 (i = 1, 2, 3), which is a copy of CP 1 ~ S 2, and two 

balls touch in zi = zj = 0 which is CP ~ = point. This description immediately 

generalizes to any 1-dimensional complex A: the edges of A become 2-spheres 

in V(A, C) and vertices become points of contact. One can visualize V(A, C) by 

thinking of the graph A and then replacing each edge by a thin tube pinched at 

the endpoints. 

For a general simplicial complex and a general field the picture is entirely 

similar. Each j-dimensional face is in V(A, F) represented by a copy of FPJ 
(living on the corresponding coordinate positions), and these projective spaces 

are glued together by inclusions in the same pattern as that of A. Thus V( . ,  F) 

is a funetor - -  cf. ~4 of [7] - -  by means of which we are "visualizing" the category 

of incidences of the simplicial complex A. 

One can play the zeta game with other algebraic geometric visualizations of 

A also. For example, one has the affine variety covering V(A, F), i.e. the set 

V(A, F) of points of F~ \{0}  whose support belongs to A; so V(A, F) is the 

quotient of V(A, F) under the action of the multiplicative subgroup F* of the 

field F. The definition and computation of the zeta function of V is analogous 

to that  of V. 

T H E O R E M  2 .5 :  
~+1 1 

ZA(t) = jl-I o.= (1 - qJt)~' 
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where 
d 

(4) L = f j - l - -  f ~ =  E (--1)i+l-J ( ~ +  1) 
i=max{j- 1,0} j fi. 

This time the singular homology of the variety over C is given by the following 

(where a = 0 is allowed and reduced homology is used). 

THEOREM 2.6 ([12]): 

a6A 

In fact V(A, C), or equivalently its intersection Sphc(A ) with the unit sphere of 

C n, has the homotopy type of the bouquet Voez~ (lkz~(a) * $21~1-1); cf. Ziegler- 

Zivaljevi5 [12] who prove the analogous formula 

aEA 

for the variety over IR. 

LEMMA 2.7: 

Id=j 

70 = 

for l _ < j  < d + l ,  

These formulas (where reduced Euler characteristics of links are used in the 

first one) follow easily from (4) and give a connection between the zeta function 

of V and its singular homology analogous to that for V. 

Following [7] it is also useful to think of Sphc(A ) "~ V(A, C) as a small deleted 

join of A with respect to the group G = S 1 -~ C*. For example, see [8], which 

gives an interesting geometric application of the Chern class of the circle bundle 

Sphc(A ) --+ V(A,C).  By using higher linear groups GL(m,F)  one can also 

consider zeta functions of other affine and projective visualizations of A. 

For other aspects of the varieties associated to simplicial complexes, see 

[1, w and [7, w 



Vol. 103, 1998 ZETA FUNCTION OF A SIMPLICIAL COMPLEX 35 

3. T h e  C o h e n - M a c a u l a y  case 

Let us now assume that A is a Cohen-Macaulay complex (in characteristic 

zero). Topologically this means that reduced homology with complex coefficients 

vanishes below the top dimension both for A itself and for links lkA (a) of all faces 

a E A. Algebraically it means that the Stanley Reisner ring C[A], or equiva- 

lently the homogeneous coordinate ring of V(A,C), is Cohen-Macaulay. Some 

examples of Cohen-Macaulay complexes are Tits buildings, matroid complexes 

and triangulations of spheres. See Stanley [9] for a thorough discussion of this 

notion and its background in commutative algebra. 

The following is an immediate consequence of the "rank-selection theorem" 

[9, Theorem III.4.5] applied to the face lattice of A. 

LEMMA 3.1: IrA is Cohen-Macaulay then so is every coskeleton A >j. 

Hence, because of the vanishing of reduced homology below the top dimension, 

we deduce from this and Lemma 2.1: 

COROLLARY 3.2: ff A is Cohen-Macaulay of dimension d, then 

l+(--1)d-Jf ld_j(A>-J) ,  j = 0 , . . . , d - 1 ,  
f~ = fl0 (A>-d), j = d. | 

~ o m  now on we assume that A is Cohen-Macaulay of dimension d, and we 

use the abbreviated notation 

(5) fli c := dimc Hi(V(A,C);C) and ~>J := dimc Hi(A>J;C) 

for the respective Betti numbers. The variety V(A,C) is 2d-dimensional, so 

/3i c = 0 for i > 2d and i < 0. For the remaining cases we get the following. 

PROPOSITION 3.3: For A Cohen- Macaulay we have 

1, i even, 
0 < - - i < d = = ~ i c =  O, i odd, 

~2d-jC : I fl~d-j j = 0 or j odd, 0 <_ J <_ d 
fl>d-J+l, j > 0 a n d j  even. 

k 

Proof: This results from substituting 

~>j={O,  O < i < d - j  
1, i = O a n d j < d  
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~-~d ~ j  (Theorem 2.3). 1 into tic = z-,j=0 ~'~-2j 

Putt ing this information together with Corollary 3.2 we obtain the following 

direct relationship between the i f -vector  of a Cohen-Macaulay complex and the 

essential Betti numbers/~c (d < i < 2d) of its corresponding variety V(A,  C). 

PROPOSITION 3.4: For A Cohen-Macaulay we have (0 < j <_ d): 

ZC2d_j, j even, 
f ~ - J =  1 c - flea-j, J odd. | 

We can now formulate the consequence of all this for the zeta function. 

THEOREM 3.5: I[ A is Cohen-Macaulay, then 

d 
ZA(t)  = l-I  (1 - -qd-J t )  (-1)j+'zc2d-j-5~ , 

j=-O 

where 5j = 1 if j is odd and = 0 otherwise. 

Proo~ This is a direct consequence of Theorem 2.2 and Proposition 3.4. | 

The formula 

(6) z (t) -- 
(1 -- qd-lt)  ~c~-'-1 (1 -- qd-3t)Zc2~-~-l... 

j~c 
(1 - qdt) ~cd (1 -- qd-2t) 2~-2 . . . 

(i.e., Theorem 3.5) shows that in the Cohen-Macaulay case the zeta function 

of A and the Betti numbers of V(A,C) mutually determine each other. Let us 

illustrate this formula with a few examples. 

Examp]e 3.6: Let A be the full simplex of all subsets of {1 , . . . ,  n}. Then ]7 = 1 

for all j = 0 , . . . , d  = n -  1, since A >j is a cone (as a poser it has a maximal 

element). Hence (by Theorem 2.2) 

d 
1 

Zz~(t) = H 1 --qJt" 
j=o 

On the other hand, V(A ,  C) = CP ~ (the full projective space), which has Betti 

numbers tic _ 1 if i is even and 0 < i < 2d, and ~i c -- 0 otherwise. This produces 

via formula (4) the same expression for ZA(t). 
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Example 3.7: Let A be a 1-dimensional Cohen-Macaulay complex (i.e., a 

connected graph) with v vertices and e edges. Then f~ = x(A) = v - e and 

f~ = X (A->l) = e, so 

ZA(t) = (1 -- t)~--v(1 -- qt)--% 

From the topological description of V(A,C) given at the end of Section 2 

(inflate the edges of A to thin tubes) one computes by elementary considerations 

the Betti  numbers/3o c = 1, /31 c = 1 + e - v, /3z c = e, which via (6) also yields 

zA(t). 

Example 3.8: Let A be the boundary complex of a (d + 1)-simplex. Then A >-j 

consists of all proper subsets of cardinality >_ j + 1 in {1 , . . . ,  d + 2}, so f ]  = 

X (A->j) = 1 + ( -1 )  d-j  (d;1) for j = 0 , . . .  ,d. (Cf. the proof of Lemma 2.1.) In 

this case it is not as easy to compute the Betti numbers of V(A, C) by inspection, 

but via Proposition 3.3 and 3.4 we get 

(d+l~ if 0 < j < d and j even, 1 + \ j+ l ] ,  - -  - -  

(d+l~ if 0 < j < d and j odd, 
t3Cd_j = ~,+lJ, if d < j < 2d and j even, 

0, otherwise. 

The variety V(A, C) is what remains of CP d+l after removing all points with no 

zero homogeneous coordinate; in other words, it is the union of the d +2  standard 

choices for "hyperplanes at infinity". 

4. Final  r e m a r k s  

(4.1) There is a large literature on f-vectors of simplicial complexes (defined 

in Section 2), see e.g. Stanley [9]. In this area the h -vec to r  

h(A) = (h0, h l , . . . , h d + l ) ,  

defined by 

1 1 (7) hj := Z ( - 1 )  j - i  f i-1,  
i=0 

plays an important role. Here we assume d imA = d and put f -1  := 1. Knowing 

the h-vector of A is equivalent to knowing the f-vector. Equations (1) and (2) 

show that  knowing the f*-vector of A also gives equivalent information. In fact, 



38 A. BJ()RNER AND K. S. SARKARIA Isr. J. Math. 

comparison of equations (1) and (7) shows that i f (A)  and h(A) are related 

to f (A)  in formally very similar fashion, namely by an upper-triangular resp. 

lower-triangular matrix of similar structure. Solving for h(A) directly in terms 

of f*(A) one gets 

(8) hJ=(-1)J(  d-t-1)j § E - f:'* 
i=0 

for j = 1 , . . . , d  + 1. In the Cohen-Macaulay case information equivalent to 

either of f (A) ,  h(A) or i f (A)  is given also by the Betti numbers of the complex 

projective variety V(A, C), as shown by Proposition 3.4. 

(4.2) Suppose that the Euler characteristic of lkA(a) equals the Euler 

characteristic of a sphere of the same dimension for all faces a E A of dimension 

_> k. This is true, for instance, for all triangulations of manifolds (with k = 0). 

Combinatorially the condition is equivalent to demanding that #(a, 1) = 

(--1) c~ in the face lattice of A for all faces a of dimension _> k. In this 

case we get an alternative expression for part of the if-vector: 

d 

(9) ] ~ = ~ - ~ ( - 1 ) a - i f i ,  j = k , . . . , d .  
i=j 

Namely, 

f j = x ( ~  ->j) = l + # ( 0 ,  i ) = l - E p ( x , i )  
6<x 

= -- E (--1)c~ = fd -- fd-' +--" + (--1)d-yfj " 
5<z<i 

Equating the two expressions (1) and (9) for f ]  we get relations 

(10) 
d 

satisfied by the f-vectors of this class of complexes for all k < j < d. For k -- 0 

and d odd these relations are equivalent to the Dehn-Sommerville equations; see 

e.g. [10, p. 136]. For k = 0 and d even the relations (10) have to be augmented 

by X(A) = 2 to obtain the Dehn-Sommerville equations. 
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(4.3) The  usual functional equation (for smooth varieties) between the values 

at t and at  (qdt)-l ,  see e.g. [4], rarely holds for the zeta function Z~(q, t) of the 

singular varieties V(A,  F) .  However, there sometimes is a "functional equation" 

of sorts between the values of its derivative at q and 1 - q. Namely, for any 

simplicial d-manifold A with zero Euler characteristic one has 

(11) (1 - -  q ) Z l A ( q ,  O) = ( - 1 )  d+l q Z~x(1 - q, 0), 

where Z~x (q, t) denotes the derivative of ZA (q, t) with respect to t. Indeed, using 

Theorem 2.2 we get ZA(q,t)  = 1 +  f*(q)t + 0 (t2), where f*(z)  = f~ + f~z + 
�9 ~e*zd " ' + J d  ' and by (1): z f * ( 1 - z )  = f (z) ,  where f ( z )  = f o z - f l z  2 + f 2 z  3 +  

�9 .. + (--1)dfdz d+l. So (11) is equivalent to f (1  - q) = (--1)d+lf(q), i.e. to the 

Dehn-Sommervi l le  equations (10). See also [6] for related remarks. 
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