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In note P we’d worked out the topology of the space of all unordered n-tuples
of points from euclidean m-space. Surprisingly I did not find this result in the
literature, but I’ve found much else – and remembered even more – during this
detailed search, so I’ll continue that miscellany of thoughts in the same vein for
some time more before I wrap up this extension of note b, to return again—see
5—to the cartesian genesis and evolution 1 of closed manifolds.

11) Symmetric squares of spheres occur as his huitième exemple in §15 of
Poincaré’s Analysis Situs (1895). A very thorough discussion of this and his
preceding example—the tight embedding ±(x, y, z) 7→ (x2, y2, z2, xy, yz, zx) of
RP 2 in the 5-dimensional linear subspace on which the first three coordinates
sum to one—together with extensive remarks on later developments, can be
found on pages 94 to 102 of my seminar notes, Poincaré’s Papers on Topology
(1993-94); and also on pages 136, 137 and 146 of an abbreviated later write-up,
The topological work of Henri Poincaŕe (1999). The reader is strongly urged to
at least browse these cited pages before continuing further.

12) The funny thing is I myself had completely forgotten the above when
I was working out—doggedly determined to look up the literature only after
I had worked them all out—the proofs given in the last installment. I could
not even recall if I had ever seen explicitly mentioned—I sure had, it is on the
aforementioned page 146 of my own paper—that the symmetric powers of any
2-manifold are manifolds. Of course, the moment I put this question later to the
web, I was reassured, but the above scanned items on my website did not show
in this search : it was two weeks more before it occured to me that Poincaré
must have said something about symmetric powers.

13) It was known to Pontryagin in the 1930’s that, the space of all conjugate
pairs of quadratic equations over the complex numbers is a 4-sphere. Indeed,
(z1, z2, z3) 7→ (z1z1, z2z2, z3z3,

1
2 (z1z2 + z1z2),

1
2 (z2z3 + z2z3),

1
2 (z3z1 + z3z1))

maps—Kuiper (1973)—the unit sphere of C3 onto the boundary of the convex
hull of Poincaré’s embedded RP 2. Alternatively, it is not hard to check that,
the symmetric nth power of RP 2 is RP 2n, and CP 2/conjugation ∼= S4 can be
deduced as a corollary—Massey (1972)—of the case n = 2 of this result.

14) In the seminar notes Symn(X) denoted the Polish nth symmetric power,
i.e., all subsets of cardinality ≤ n of X, we’ll now denote it by Symn

P (X) and
use Symn(X) := Xn/Σn for all unordered n-tuples of X. For n > 2 the two are
different, for example the natural surjection Sym3(X) → Sym3

P (X) maps the
two unordered 3-tuples {a, a, b} and {a, b, b} to the same cardinality 2 subset
{a, b}. Indeed, the space Sym3(S1) of cubic equations over the reals with all roots
real is a solid torus, on its boundary 2-torus a root is repeated and {a, a, b} ↔
{a, b, b} switches latitude and longitude; by identifying these (as Keerti had last
year checked) one gets Sym3

P (S
1) ∼= S3, as was shown by Bott (1953) in a letter

to Borsuk who four years before had claimed it was S1 × S2.
1As developed in various notes of Plain Geometry & Relativity, I-V.
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15) The homeomorphism Symn(RP 2) ∼= RP 2n of 13 is not multiplication of
n real quadratic (homogenous in x and y) equations—this factorization is not
unique—but there is this fundamental partition of RPn : subspace Symn(S1) of
real degree n equations with all roots real, then those with one pair of conjugate
complex roots, then those with two, etc. The lifted centrally symmetric partition
of Sn for n = 2 is shown in mUl mslw; and for n = 3 all real cubic equations with
real roots lift to a solid torus in S3 :- the remaining equations factorizing into
that yellow open 2-cell B2 worth of quadratic equations with complex roots,
times an S1 of linear equations, i.e., an open solid torus �; but what then is the
topology of this natural partition of the n-sphere for n ≥ 4 ?

16) We know–note P–that Symn(Rm) is the infinite cone over the join Jn,m

of Sm−1 and n − 1 copies of RPm−1. Using Sm = Rm ∪ {∞} it follows that,
Symn(Sm), n ≥ 2, is the mapping cone of a surjective ‘hopf map’ hn,m : Jn,m →
Symn−1(Sm), generalizing case m = 2, when Jn,2 = S2n−1, Symn(S2) = CPn

and hn,2 : S2n−1 → CPn−1 is the usual fibration into circles.
17) Despite many instances like 12 above, I’m often told I have a very good

memory (!) but neither perhaps should I call my memory ‘bad’ : forgetting has
helped me discover some new mathematics by seeing things a bit differently, for
example, seeing projective spaces as ‘spaces of equations’ as in note d is pretty
useful. Indeed, as I have suggested before—see notably t, T and f—our vaunted
mental progress is more a ‘recycling in time’.

18) Poincaré complained of a bad memory, likewise Atiyah 2, yet at 88 (!) he
is still making beautiful mathematics, e.g., a simply connected closed manifold
M4(Helium) with e = 8, τ = 0, which is a 2-fold branched cover of the 4-torus,
and has the quaternion group of order 8 acting freely on it, and which, per a
numerology—see 5—that he has been finessing since 2011, tells what the second
element looks like. For the first, M4(Hydrogen) = Sym2(S2) = CP 2, and it
seems he is mulling for the other elements, simply connected closed manifolds
branch covering the squares Sym2(M2) of surfaces of genus ≥ 2 ?

19) Now there are more than four, etc., but Atiyah’s elements are akin to
those in Euclid’s Elements. 3 In Geometrical microphysics (1975-77) I too had
interpreted the kinematics and dynamics of a microsystem as the topology and
geometry of a closed manifold which cuts physical space (spacetime?) in an M2

shaped microscope, with only those cohomology classes of an ergodic microflow
observable which can be defined in terms of a triangulation of the manifold. In
writing this mouthful I’ve refreshed my memory by reading and looking at a

2Atiyah once said that, but for his bad memory, he could well have become a historian, but
methinks—and my two papers entitled “The Forgotten ... ” should clinch this point!—that
a bad memory is no impediment to doing good history either.

3For more on this ‘recycling in time’ see pages 7 and 11 of “213, 16A” and Mathematics
(2010). This watershed paper contains a lot, e.g., a construction of not only the five platonic
solids but of many, many more—see also How I learnt some well-known folklore (2010)—in its
mere 37 pages. Despite appearances, this and most subsequent papers on my website are not
typical postings that you can get a hang of by browsing on-line. If you want to understand
what I have been doing lately, you’ll need to print out these pdfs (in colour!) and peruse them :
a continuous but circular story with flashbacks is being narrated in a condensed style, evenso,
a beautiful and simple yet broad picture of it all is emerging ...
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picture in an extract which appeared years later as Stationary states (2002); the
rest I’ve still to dig up, organize and post on my website; but yes, the energy
levels of the hydrogen atom were tied to the homotopy classes of maps from a
hidden 3-sphere to a 2-spherical microscope. Since CP 2 is the mapping cone
of a generating map S3 → S2 seems I was on the right track, but, if Atiyah’s
hydrogen cuts physical spacetime tightly in an RP 2

6 , may be we should hone it
to the CP 2

9 of Kühnel and Banchoff (1983) obtained by splitting three of the six
antipodal pairs of vertices of the icosahedron, i.e., Euclid’s water 4 ...

20) ... with perhaps the two unequal orbits of the action of the heisenberg
group over Z3 on CP 2

9 the proton and electron of this hydrogen? Heisenberg’s
microphysics was linear but infinite dimensional. Schrödinger’s had, as well, a
finite dimensional but nonlinear dual. Which was declared not worth bothering
about. So, naturally, all but the very obedient started bothering about it. My
microphysics was on smooth closed manifolds of any finite dimension, with a
modicum of geometry. Now, starting from even less—e.g., see PG&R Note 7—
we have understood broadly, the cartesian creation and evolution of all closed
manifolds, see PG&R-V Note 28. Atiyah’s atoms, on the other hand, are closed
smooth manifolds of dimension 2+2 = 2×2, and carry the yang-mills geometry
which uses the self-duality available only in this dimension. This had enabled
Donaldson (1983) to show that a closed simply connected smooth 4-manifold is
orientably cobordant to some CP 2’s iff its intersection form is positive definite,
thus giving us some but not, all the 4-dimensional simply connected manifold
matter that can evolve smoothly from Atiyah’s hydrogen? 5

21) 6 Continuing 15, the subspace of all real degree n equations with i pairs of
conjugate complex roots is homeomorphic to Symn−2i(S1)×B2i :- they factorize
uniquely into n− 2i linear equations, which gives Symn−2i(S1), and i quadratic
equations with complex roots, which gives Symi(B2) ∼= B2i �; and the union of
these [n2 ]+1 disjoint subspaces is RPn, the space of all real degree n (homogenous
in x and y) equations. So, for the topology of these parts it suffices to know
the symmetric powers of S1, but for how they fit, we’ll need to look also at how
many conjugate pairs of roots approach a repeated real root, etc. We know that
Symn(S1) is an n-dimensional manifold-with-boundary :- for Symn(R), n ≥ 2,
is a closed half n-space by note p �; its interior is all degree n equations with n
distinct real roots. Also for n = 2 and 3 we know that Symn(S1) is, respectively,
a möbius strip and a solid torus. Indeed, for any n, Symn(S1) is homeomorphic
to the mapping torus of the antipodal map of the closed ball Dn−1. To see this
we’ll use S1 ∼= R/Z—as was done for n = 2 on page 99 of the Poincaré seminar
notes—and examine the defining identifications of Symn(R/Z) :-

4The four greek elements were the four humours of unani medicine, which is still popular,
and icosahedral calthrates of water have been observed by fans of homoeopathy.

5The de Rham cohomology of foliated manifolds (1974) is a Stony Brook thesis, but I became
aware of the excitement only later when someone there, on receiving Geometrical microphysics,
had advised me to jump on this yang-mills bandwagon! However Thom had empathized with
my cartesian approach, but by the time I received his insightful suggestions—the use of ‘dual’
in this paragraph was based on something he wrote—it was a wee bit too late.

6On we go! but it is clear by now that footnote 20 of PG&R-V was far more than an aside,
and, we have returned to the genesis and evolution of closed manifolds.
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22) Each equivalence class π(x1, . . . , xn), where xi are real numbers mod 1,
has one member such that 0 ≤ x1 ≤ · · · ≤ xn ≤ 1, and only one if in the interior
of the n-cube, 0 ≤ xi ≤ 1, but has more if on its boundary, so identifications
need to be made here. To wit, if Ai denotes the vertex with last i coordinates 1,
Symn(S1) is the quotient space of the closed n-simplex A0 . . . An obtained by
identifying a pair of ordered facets : A0 . . . An−1 ≡ A1 . . . An. This ‘increasing’
n-simplex is one of the n! into which the n-cube is subdivided by the possible
orders of the n components. We’ll now partition it into segments parallel to the
edge A0An to which its remaining n − 1 facets are incident. The ends of the
segment C0C1 joining the centres of A0 . . . An−1 and A1 . . . An get identified, and
any other segment gets concatenated with some others before it closes with total
length a bigger mutiple of C0C1 dividing A0An. This partition into circles shows
Symn(S1) as the mapping torus of the homeomorphism of the closed (n−1)-ball
A0 . . . An−1 linearly extending the permutation A1 . . . An−1A0 of vertices. This
permutation is even, so the homeomorphism orientation preserving, iff n is odd;
hence, as far as the topology of the space is concerned, we can here use instead
the antipodal homeomorphism.�

23) So, for n odd, Symn(S1) ∼= S1×Dn−1, e.g., identifying ABC ≡ BCD a
tetrahedron ABCD becomes a solid torus; and—see 14—if also CDA ≡ BDA,
then an S3; on the other hand, the identifications ABC ≡ BCD,CDA ≡ DAB
give an orientable 3-manifold with fundamental group Z4:- These identifications,
I ≡ I ′ and II ≡ II ′, of the four facets of the tetrahedron, partition its six edges
into two cycles, II ′ ∩ I ≡ I ′ ∩ I ≡ I ′ ∩ II ≡ II ′ ∩ II and I ∩ II ≡ II ′ ∩ I ′, so
the dual generators I and II of this group are subject only to the two relations,
I + I + II + II = 0 and II − I = 0, i.e., II = I and 4I = 0. The quotient space
has no singularities and is orientable because 7 e = 1−2+2−1 = 0 and {I, I ′},
{II, II ′} have opposite signs in ∂(ABCD).� If ABC ≡ BCD,CDA ≡ BDA,
the edges partition into II ′∩I ≡ I ′∩I ≡ I ′∩II ≡ II ′∩I ′ ≡ I∩II and II ′∩II,
which give I + I + II − I + II = 0 and II = 0, so I = 0.� Besides we can make
two non-orientable 3-manifolds from ABCD, also covered by S3; and maybe,

7See Combinatorial methods in topology (1994), page 60; and on its page 62 are, the seven
orientable 3-manifolds that can be made by identifying the opposite facets of a cube.
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all odd dimensional closed pseudomanifolds made by identifying pairs of facets
of a simplex have fundamental group finite?

24) For example, identifying facets A0 . . . An−1 ≡ A1 . . . An of the n-simplex,
A0 . . . An, then A2 . . . AnA0 ≡ A3 . . . AnA0A1, etc., gives a pseudomanifold with
fundamental group Z(n+1)/2 for any odd n > 3; but now there are singularities,
indeed e ̸= 0; and maybe, only finitely many (closed) manifolds can be made over
all n, by identifying facets, from the n-simplex? However, any cartesian power
of our closed string S1, symmetrized only with respect to suitable permutation
subgroups and their spin covers, should give cartesian manifold matter like
Atiyah’s helium—see 18—which can be obtained from the 4-torus by using the
spin cover of the alternating group on four letters. Also, it should be possible
to make these n-manifolds from the n-cube, just like how S3 divided by the
quaternion group of order eight—see the Poincaré seminar notes—was made by
an identification of the opposite facets of the 3-cube.

25) So, continuing 21, each part P̃i of the lifted fundamental partition of
Sn is topologically the same open manifold S1 ×Bn−1 plus varying amounts of
its boundary, except, for n even, the final part is two open n-balls, S0 ×Bn−1,
while for n odd it is S1×Bn−1. The initial part P0 of all degree n real equations
with no complex roots we know is Symn(S1), a manifold-with-boundary; so we
ask, is the union of the first some parts also one; i.e., is the subspace Wi ⊆ RPn

of all degree n real equations with at most i conjugate pairs of complex roots a
manifold-with-boundary? The answer seems to be yes :- We assume inductively
that ∂Wi−1 is a closed (n − 1)-manifold. The closed subset Wi of RPn is the
union of Wi−1 and Pi

∼= Symn−2i(Si) × B2i. Some of the boundary points of
intPi are in Pi, these form an open (n−1)-manifold ∂(Symn−2i(Si))×B2i. The
remaining boundary points of Pi in RPn form ∂Wi−1. Of these, an open (n−1)-
manifold worth of points is now in the interior of Wi, viz., those corresponding
to degree n equations with i− 1 complex conjugate pairs of roots and at most
three equal real roots: of these two bifurcate to the ith pair of complex roots.
The remaining boundary points x of Pi complete ∂Wi−1. The topology of ∂Wi

near this equation x is like that of ∂Wi−1 near x, for, if all equations x′ with
same roots as x except (r, r) which are now (r1, r2) at an ϵ > 0 formed a circle of
that spherical link, all equations x′′ with these roots now (z, z) at this distance
form a circle; so ∂Wi is also a closed (n− 1)-manifold.�

26) So, can any closed n-manifold – the child of a periodic cartesian flow in
a higher dimensional spacetime – be decomposed similarly into these curled-up
spacetimes S1 ×Bn−1—PG&R-IV, Figure 9, Notes 25-27—if e = 0, and if not
also some open balls? Then, within these curled-up spacetimes is born, from
their chaotic cartesian flows, still smaller cartesian matter ... Adding Pi is not
quite the same as attaching a round handle of index 2i to Wi−1, but as far as
the topology of Wi is concerned, it is : for n odd the fundamental partition gives
an economical round handle decomposition of RPn and Sn. That round handle
decompositions exist under the obvious necessary conditions was Asimov, and
then Thurston had made, using his mysterious local construction, a codimension
one foliation from any round handle decomposition. Maybe for the fundamental
partition there is no mystery, indeed this spherical partition seems tied to how,
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Lawson and Tamura had previously foliated all odd spheres, and maybe it will
give us even nicer, foliations of odd spheres tied to the discriminants which occur
in the sturm theory of polynomial equations?

27) Equations of degree at most four were solved by Khayyam8, and I think
this aesthete would have loved our elaboration, this fundamental partition of
the n-spheres, the simplest of all cartesian matter, into essentially just (n+1)/2
round spacetimes, in which our doomed urge to hold on to the here and now,
absolute time = constant, is itself represented by, reeb snakes trying to swallow
their own tails, an apt motif for the constant recycling of time in our minds, as
much as in these tiny parts of matter.

28) Two questions—a foliation on S3 ? a complex structure on S6 ?—were
raised by Hopf in the 1930’s. Foliated and complex structures are alike, they can
both be viewed as Lie algebras of vector fields that a manifold can admit only
if it satisfies some obvious conditions: these S3 and S6 respectively fulfil, but,
for S6 the answer is still blowing in the wind ! For more on this viewpoint see
Non-degenerescence of some spectral sequences (1984), the notion of a complex
structure allows numerous examples 9 very different from the nice ones that arise
in algebraic geometry. These nice ones S6 can’t admit, and the constructions
of possible complex structures on it that have been proposed are very intricate
indeed; on the other hand, Atiyah (2016) has proferred a mod 2 invariant which
will prove that S6 does not admit any complex structure !

29) The fundamental partition depends on a total order : a point of RPn

was deemed an equation of degree n by making its coordinates in order the n+1
coefficients. Which echoes many things in that omnibus paper, On neighbourly
triangulations (1983), for example, order-orientable triangulations and heawood
inequalities, the latter because some algebraic shifting, order-dependent yet such
that it does not kill van Kampen’s mod 2 invariant, will do the job (note a total
order has given us now a Z/2-partition of the sphere). Also, Atiyah’s strategy
for S6 echoes non-embeddability in twice dimensional space using van Kampen’s
invariant. One checks for one immersion it is nonzero, and then uses the fact that
the immersion is unimportant. Likewise Atiyah checks for one almost complex
structure on S6 that his definition does give an odd number, and then claims
that the almost complex structure is unimportant. His definition is of course
different – the key seems to be his profound paper K-theory and reality (1966)
(which seems related to the fundamental partition) – and ways more subtle.
Which reminds me that there have been around now for many decades some
other subtle mod 2 invariants, notably that of Kirby and Siebenmann, which
too I have never quite understood to my satisfaction, so there is much left to
do, and my plate remains as full as ever ...

kssarkaria@gmail.com August 20, 2017.

8See Amir-Moéz (1962), also Emwr iKAwm dI s`B qoN ipAwrI r`cxw.
9For similar compact examples, I was planning to use the complex structures defined by

Wang on symmetric spaces, but this sequel was not written up.
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