
… but nowhere differentiable!
K. S. Sarkaria

About sixty years ago I discovered, much to my delight, that continuous but
nowhere differentiable functions are in fact quite easy to visualize.1 Given any
triangle, any two of its sides give us the graph, over a period, of a continuous
periodic function with period equal to the length of the third side. Our x-axis
here is along the third side, and the (possibly very oblique) y-axis parallel to
the median from the opposite vertex. Now draw parallels to the other two sides
from this midpoint to get two similar triangles of half the size and iterate this
construction. The sum of this infinite sequence of continuous functions, each
with period half that of the previous, is continuous because it is dominated by
a geometric series of constants with common ratio half.

We can assume the equal but opposite slopes of the two sides ±1 (and even
put a euclidean metric such that the axes become perpendicular). To see that
the sum function is nowhere differentiable we nest any given x for each m in a
closed interval between consecutive zeros of its mth summand. The slope of the
chord over this interval for this and all subsequent functions is zero, while for
all previous functions in our sequence it is +1 or −1; so the slope of the chord
of our sum function is alternately an odd or even integer for m even or odd. So
it does not approach a finite limit as m goes to infinity.�

Maya is duality :- quotients of all sequences of a dual {0, 1} give us about
all the shapes we see! 8 Only, the identifications needed to create a hat or an
elephant or a homology 3-sphere in 4-space, are a wee more involved than the
familiar base two identifications of eventually 1 with eventually 0 sequences that
create a segment, say the base of our triangle.

Using instead of 2 = {0, 1} sequences from a bigger finite set g, say the digits
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} of base ten notation, gives us no new shapes, because
the product spaces 2N and gN are homeomorphic, but it gives us a whole panoply
of distinct arithmetics in this cantorian dust!

I have it on good authority that these arithmetics were discovered by Sahib
Singh of Patiala. The primary school work of this royal prodigy–certified copies
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of the original folios in the archives are awaited–show clearly (for we still use the
same Arabic numerals) that he was in full possession of the ring Z10 of 10-adic
integers modulo jargon at this tender age:-

It seems after learning the usual carry operations on finite sequences of digits
(whole numbers) this child had one fine day the great idea that if he wrote them
as (eventually zero) infinite left sequences, then he could subtract even bigger
numbers from smaller! The rest, the carry operations extend to all infinite left
sequences and obey the same laws, was easy.�

Infinite sequences of digits had sneaked up on an older me in ‘boring’ decimal
calculations. That how utterly magical their underlying idea in fact was dawned
on me years later! In hindsight there was no reason for this delay. We created
from the dust of ten digits a segment:- the first digit picks from ten equal parts
that in which a point lies, the second from hundred equal parts that in which a
point lies, etc. Clearly by dividing successively into g, g2, g3 . . . equal parts we
can use here instead of ten any whole number g 6= 1. Likewise (even from the
discrete dust of 2 digits) we can make an n-simplex, say by repeatedly deriving
it; so any simplicial complex, so all sorts of manifolds in our three or even in
more dimensions; and baby we have just begun . . .�
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Those pesky identifications .42000... = .41999..., etc., of decimals are but the
interior vertices of this iterated subdivision of [0, 1]: these are intersections of
nested intervals of length 1

10 ,
1

100 ,
1

1000 , . . . in exactly two ways, all other points of
the segment in a unique way; and likewise for any base g. Yet more glue needs to
be applied to this compact discontinuum to view higher dimensions, for example,
as we create a closed 2-simplex, that is a triangle, by using its iterated derived
subdivision, then, for each term, over some points - see figure - of this closed
sub 2-simplex, there is a two or six fold ambiguity regarding the next term,
for they are incident to as many triangles of its derived. However, way back
in the day then, even those pesky identifications had become clear only after I
learnt about infinite geometric series, when they became 4× 10−1 +2× 10−2 =
4× 10−1 + 1× 10−2 + 9× 10−3 + 9× 10−4 + · · · , etc.

Using its iterated base g subdivision, [0.∞) can be viewed as a quotient space
of a sum (disjoint union) of denumerably many compacta gN above respectively
the segments [0, 1], [1, 2], . . . that concatenate to make this ray. Each point of
the ray other than the nonzero vertices of subdivision has just one pre-image,
these have two. Applying more glue on this locally compact discontinuum Qg

we get also higher dimensional locally compact manifolds, etc.
These g-adic numbers Qg ⊃ Zg are all left sequences . . . , ar+2, ar+1, ar 6= 0

of g digits where now the first place r ∈ Z with a nonzero term may not be in
the positive integers N ⊂ Z; addition and multiplication by usual base g carry
operations makes Qg a bigger ring, and even a field if g is prime.

The reversal . . . , ar+2, ar+1, ar 7→ ar
1
gr +ar+1

1
gr+1 +ar+2

1
gr+2 + · · · or briefly

ar, ar+1, ar+2, . . . , gives the point below of the created ray; so the condition,
integral part after reversal is n− 1, prescribes the summand gN ⊂ Qg creating
[n − 1, n]. Also, reversal creates from patialvi arithmetic grecian addition and
multiplication of initial segments of the ray10 : for these are given to any desired
approximation by the same carry operations.�

Mimicking this (using the same carry operations on eventually zero sequences
approximating the two points of the quotient to be added or multiplied) does
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not give well-defined binary operations in general, and even for a ray, though its
arithmetic as a process is essentially the same as upstairs, clearly the quotient
map Qg ↓ [0,∞) does not commute with their outputs, for example, no nonzero
point of the ray has an additive inverse in it.

The usual natural lifting problems arise: which functions in the quotient
space lift up, which functions upstairs are lifts, and if continuity, differentiability,
etc., is preserved ? We recall the operations of Qg are continuous in its topology,
and the derivative of a function f whose domain and range are in it is once again
f ′(x) = limh→0

f(x+h)−f(x)
h whenever r.h.s.makes sense and exists. Occasionally

there are also interesting answers.
The additive inverse of Qg lifts the order reversing linear isomorphisms of

the components of [0,∞)\{gr, r ∈ Z}:- Let’s first see why the powers of the base,
say 10, need to be excluded. Take, e.g., 10 = 9.999 · · · ∈ [0,∞) below the 10-
adic numbers . . . 0001 with first nonzero place or value r = −2 and . . . 9999 for
which r = −1. To subtract them from . . . 0000 ∈ Q10 we put them below it so
places above and below match and use carry operations: this gives respectively
. . . 9999 with value r = −2 and . . . 00001 with value r = −1, which lie above
distinct points 99.999 · · · = 100 and 1 of the ray.

Clearly 10-adic minus is a lift above points of the ray below a unique 10-adic
number, that is below left sequences of the digits neither eventually 0 nor 9, for
this remains true after subtraction from . . . 0000 ∈ Q10.

Above the remaining countable but dense subset of the ray also 10-adic minus
is a lift. Take, e.g., 25.36 = 25.35999 · · · ∈ (10, 100). The two 10-adic numbers
above it are . . . 0006352 and . . . 9995352 both with r = −2. Subtracting them
from . . . 0000 ∈ Q10 we get respectively . . . 9993648 and . . . 0004648 both with
r = −2. So both above the point 84.63999 · · · = 84.64 of (10, 100) which is at the
same distance from the end 100 of this interval as 25.36 was from 10. Likewise
this involution below pairs points equidistant the two ends, in particular the
mid-point 55 = 54.999 · · · is a fixed point of this involution because the two
10-adic numbers above it . . . 00055 and . . . 99945 both with r = −2 are merely
interchanged when we subtract them from . . . 0000 ∈ Q10.�

This involution of [0,∞)\{gr, r ∈ Z} is drawn below for g = 2, but note this
symmetric binary relation on the ray, that is, subset of [0,∞) × [0,∞), varies
continuously over all real g > 1. It is tempting to muse over what this means
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when g is not a whole number, because the iterated subdivision of the ray into
closed subintervals of length 1

g ,
1
g2 , . . . now does not admit like carry operations,

but there may be a noncommutative interpolation of these for numbers between
g = 1, 2, 3, 4, . . . ; however we’ll not pursue this here because we have enough
and to spare on our plate already.

We note the above function is differentiable with constant derivative −1 on
each open intervals of its domain, just like the function x 7→ −x creating it which
is defined on all of Q2 and has constant derivative −1. For any prime base p,
the product of two nonzero digits being nonzero mod p, we can not only talk of
division by numbers not zero, and so of rational functions in Qp (whose domain
lacks only the finitely many zeros of the denominator) but also we know these
functions are all differentiable with derivatives given by the usual formulas. Of
these the few which lift functions defined on at least an open interval of the ray
[0,∞) deserve now to be worked out, to see for example if there is correlation
between derivatives above and below; but beyond algebraic functions tied to the
five p-adic operations there are many others …

Dust thou art to dust returnest: summands fm of our continuous but
nowhere differentiable function lift over [0,∞) to functions f̃m : Q2 → Z2 whose
sum is also continuous but nowhere differentiable:-

We recall fm : R → [0, 1] has period 21−m with fm(x) = x if 0 ≤ x ≤ 2−m

and fm(x) = 21−m − x if 2−m ≤ x ≤ 21−m. So fm maps x ∈ [0,∞) with base 2
expansion x = a−t · · · a0.a1a2 · · · to .0 · · · amam+1 · · · ∈ [0, 1] if am = 0 and (we
use overlining for 0 ↔ 1) to .0 · · · amam+1 · · · ∈ [0, 1] if am = 1.

So fm lifts to f̃m which maps any 2-adic number x = . . . a2a1a0 . . . a−t to
the 2-adic integer . . . am+1am if am = 0 and to . . . am+1am if am = 1. Only the
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dyadic rationals x ∈ [0,∞), i.e., vertices of the iterated base two subdivision,
have two base two expansions, that eventually 0 reversed we denote by x+ ∈ Q2,
the other by x− ∈ Q2; the 2-adic number above other x ∈ [0,∞) will also be
denoted x ∈ Q2. We note that fm maps the dyadic rationals and only these to
dyadic rationals fm(x), and that then upstairs f̃m maps the pair x± onto the
pair fm(x)± though switching can occur.

Let’s dub the eventually zero number xm = . . . 00am . . . a−t ∈ Q2,m ≥ 1 the
mth truncation of x = . . . a2a1a0 . . . a−t ∈ Q2. We note that f̃m(x) = x − xm

if am = 0 while f̃m(x) = xm − x if am = 1; further, all 2-adic numbers having
this same mth truncation c = xm form a clopen subset of Q2. So for all 2-adic
numbers y in this neighbourhood Uc of x we have always f̃m(y) = y − c or else
f̃m(y) = c− y. So, using the partition Q2 = Um.0 + Um,1 into clopen sets of all
x ∈ Q2 with am = 0 or 1, f̃m : Q2 → Z2 has constant derivative +1 on Um,0

and −1 on Um,1, while the created fm : [0,∞) → [0, 1] is not differentiable at
some isolated points but elsewhere has derivative ±1 :-

So counting turning points twice, Um,0 ⊂ Q2, all 2-adic numbers with mth
digit am = 0, is above the part of [0,∞) where this wave has one-sided derivative
+1, each interval contributing a summand Uc on which mth truncation xm = c;
while its complement Um,1 is the disjoint union of the remaining Uc above the
intervals where this wave has one-sided derivative −1. Further, the graphs in
Q2×Z2 of the lifts f̃m project to those of these waves fm in [0,∞)× [0, 1]. But,
the graph of the patialvi sum of two or more of these lifts is not above the graph
below of the grecian sum of the corresponding waves.

Anyway, we know by now these finite sums, say f̃1 + · · · + f̃N : Q2 → Z2

are differentiable everywhere, with derivative −N where all summands have
derivative −1, derivative −N + 2 where exactly one has derivative +1, … , and
derivative +N where all summands have derivative +1. As for the infinite sum∑

m≥1 f̃m(x), we note that this series converges uniformly because the value of
f̃m(x) is bigger than m for all x ∈ Q2. Therefore its sum R(x) is continuous.
If a derivative R′(x), x ∈ Q2 exists at all, it certainly is not

∑
m≥1 f̃

′
m(x): this

series diverges for all x because its terms are ±1.
To clinch the nonexistence of R′(x) we compute the slopes ∆R

∆x for increments
∆x = 1N , the 2-adic integer with all digits 0 except 1 at the Nth place, or
∆x = −1N which has 1’s only at all places from the Nth leftwards, and check

6



that the successive differences of these slopes as N jumps to N + 1 do not
converge to zero. Adding ±1N to x = . . . a2a1a0 . . . a−t ∈ Q2 does not alter its
mth truncation if m is less than N so then ∆f̃m

∆x = ±1. So the sum of these
slopes jumps by ±1. The remainder RN (x) = f̃N (x) + f̃N+1(x) + · · · has 0
digits only up to the Nth place. We’ll give to x the increment 1N if aN = 1
or the increment −1N if aN = 0 to ensure that the pair of digits at the Nth
and (N + 1)th place stay alike or unlike as the case might be. So the digit at
the (N + 1)th place of RN (x), which is the same as the digit at this place of
f̃N (x), stays put. Thus the first nonzero digit of the left sequences ±∆RN (x) is
encountered at the (N + 2)th place or later. Division by ∆x = 1N is the same
as right shift by N places. So ∆RN (x)

∆x has its first nonzero digit only at the 2th
place or later. Thus the successive differences of ∆R

∆x as N jumps to N +1 have
digit 1 in their first place and don’t converge to zero.�

If forward time is itself periodic ‘this all’ is going to be reincarnated ad
infinitum! So, more humbly, we turn to graphs showing displacements of things
as time elapses, since relative motion, periodic or not, is something we do see in
this all. Continuous but never differentiable motion was attained by a kind, bold
and devout bohemian by using ad infinitum this grecian paradox: ‘a tortoise
covers a certain length at a steady speed, a hare does the same in the same time
but moving always at twice the speed’:-

Besides covering the given segment in the same direction as the tortoise, the
hare must run an equal extra amount for half the given time. This we’ll allow
him to do by running an even number of times more some interval(s) of the
segment itself (or even beyond its ends on that line). Objections like how could
he reverse instantly up to the same speed we’ll ignore; indeed we plan to iterate,
i.e., the hare will become a tortoise to a second hare twice as fast as him, and
so on and on, so our tortoises and hares shall soon be flying much faster than
the speed of light in this flight of pure fancy! Of the uncountably many allowed
solutions we have shown above the simplest: the hare dashes ahead to 3

4d, then
reverses past the tortoise at mid-point 1

2d back to 1
4d, where he reverses again

to finish the race in the exact same time 1 as the tortoise.
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Graphically the progress in time 0 ≤ t ≤ 1 of the tortoise is that dotted
segment with a nonzero slope s. It is replaced by the graph ϕ1 of the hare which
has three segments: the first and the third on parallel lines of slope 2s through
the ends while the second is on the line of slope −2s through the mid-point. This
in turn is replaced by the graph ϕ2 of the second hare which has nine segments
with slopes alternately 4s and −4s, obtained by applying the same construction
to each of the three segments of ϕ1; and so on; thus the graph ϕn of the nth hare
has 3n segments of slopes alternately 2ns and −2ns. Since the absolute value of
the rise or fall of each of the three segments is at most three-fourth that of the
segment on which we apply our construction, |ϕn+1(t)− ϕn(t)| < ( 34 )

nd, which
shows that all these hare-y motions converge uniformly as n goes to infinity to
a continuous but obviously very hairy motion ϕ(t), t ∈ [0, 1].

All vertices–also mid-points of segments–of any ϕn are on ϕn+1, so on ϕ, so
all segments of any ϕn are chords of ϕ; their slopes being large in absolute value
for n big, but positive or negative alternately, on this countable dense subset of
(0, 1) no finite or infinite value can be assigned to ϕ′(t), but ϕ′(0) = ϕ′(1) = ±∞
depending on whether s is positive or negative.

No single finite or infinite value can be given to ϕ′(t) at any other t ∈ (0, 1)
either. To see this note that now, for each n, there is a unique segment PnQn of
ϕn such that Pn comes before ϕ(t) and Qn after it in this limiting motion. Were
ϕ′(t) to exist the slopes of these ever smaller straddling chords PnQn should
also approach this value as n goes to infinity. So certainly no finite value can
be assigned to ϕ′(t), but what if the slopes of all but finitely many of these ever
steeper chords are positive, or else almost all are negative? Then we’ll again
use, respectively, the two graphs above with a few changes.

If almost all these slopes are positive we use the first graph with AB deemed
to be PnQn where n is big. So big that one of the positive sloping segments of the
zee obtained by performing our construction on PnQn is Pn+1Qn+1. Accordingly
we label the zee Pn = Pn+1, Qn+1, Rn+1, Qn or Pn, Rn+1, Pn+1, Qn+1 = Qn and
extend the dotted graph ϕn leftwards or rightwards–only this case is drawn–till
the mid-point Sn of the adjacent segment. We claim that the straddling chord of
ϕ(t) joining Rn+1 and Sn has a large negative slope. To verify this for the case
drawn, let Sn have coordinates (hn, kn) with respect to Pn, then the coordinates
of Qn are ( 34hn,

3
2kn), so those of Rn+1 are ( 34

1
2
3
4hn,

3
2
1
2
3
2kn), from which we see

that SnRn+1 has slope − 4
23

kn

hn
; and a similar calculation gives the same answer

for the other case. If almost all PnQn have negative slope we use likewise the
left↔right mirror image, i.e., the second graph.�

So, arbitrarily close to any continuous function there’s another which is also
nowhere differentiable:- tortoises ↔ hares play on each segment of a piecewise
linear approximation.� Also, they can play many ways, e.g., the hare’s motion
in time can be on equally spaced lines of slope 2s or −2s, for, if mesh is small,
most of these lattice paths keep hare within track; indeed as long as, each leg run
is shorter than the track, we can allow him to even overrun either end:- iterating
as before gives a continuous motion from A to B in the same time which is never
differentiable.� We can likewise iterate ad infintum any piecewise linear hare-y
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motion within the track – or even let him overrun the track as long as each leg
run is shorter than the track – and it seems likely that:- if our rabbit doesn’t nap,
and the total distance he runs is more than his pal, then this limiting continuous
motion is never differentiable ?

This cliffhanger seems just the place from which to continue these musings,
as has been my wont in the past too, in the guise of Notes, of which only some
will be annotations, others reminiscences, but hopefully there shall be also again
eventually many more theorems, proofs and problems below than above, but be
ready as well for irrelevant but insistent thoughts, etc., so with this understood
to be the very wide scope of this word here, now come these

Notes.

1. All I ‘discovered’ really was just the beautiful Chapter I, Differentiation,
of Riesz and Sz.-Nagy (1952). The rest—this was in 1966—drawing pictures to
follow say its first two pages and making two triangles of half the size instead of
ten of one-tenth, etc., was easy and fun. I’m not sure if I still have those sketches
and stuff, but the joy of understanding the discoveries of Lebesgue, Denjoy et
al., is still vivid. For example the picture in Distances and homeomorphisms
was also drawn from memory from that time only.

2. At this point I’ll urge you to look at probably my best paper PG&R
(2013-16), of which the best is in some of its later notes, but just from its note
5 you can learn in quick order how I ‘discovered’ mathematics in 1962 and why
Cours d’analyse mathématique (1902) by Goursat is special to me.
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Its hand-drawn ‘frontispiece’ is however only a few months old.1 Using it
and log 1+x

1−x = 2(x1 +
x3

3 + x5

5 + · · · ) on page 102 of this volume I checked that the
limit of log P1B

P1A
P2B
P2A

÷ AB as AB shrinks to its mid-point M is g1(v) = 2c
c2−v2 ,

respectively, g2(v) = 2√
c2−v2

, for the two cases shown in this frontispiece, i.e.,
when the element AB is radial, respectively, tangential.

A reflection-invariant 2 riemannian metric on an open ball of dimension two
or more is plain : it has the same polar form (g1dr)

2 + (g2rdθ)
2 on any plane

section through its centre, g1(r) and g2(r) being its infinitesimal radial and
tangential comparison ratios. The above calculation of limits shows that the
cayley distance—see PG&R—on an open ball is such a riemannian metric, viz.,
that with g1(v) =

2c
c2−v2 and g2(v) =

2√
c2−v2

where c is the radius.
3. On page 6 already Goursat informed me that Weierstrass gave ‘examples

of continuous functions which do not possess derivatives for any values of the
variable whatever’ with a footnote citing his 1872 note and a memoir by Darboux
with other examples; and also informed me that ‘one of Weierstrass’s examples
is given later (Chapter IX)’: it is way later, § 200, pp. 423-425 3 but I must have
worked my way to and through it by 1964.

As usual differentiable means has a unique finite derivative, page 7, and
on page 6 about y = x

2
3 Goursat says its ‘derivative is said to be infinite for

x = 0’ though the difference quotient y/x = x− 1
3 approaches +∞ from the right

and −∞ from the left; accordingly–page 10–‘if two points be taken on the curve
y = x

2
3 , on opposite sides of the y axis, it is evident from a figure’ the slope of the

line joining them can approach any limit whatsoever ‘by causing the two points
to approach the origin according to a suitably chosen law’: take a secant of the
required slope and slide it parallely towards the origin.� However, if a unique
derivative f ′(x), finite or infinite, exists, then f(x+h)−f(x−k)

h+k approaches f ′(x)
irrespective of how h > 0 and k > 0 approach zero:- because this slope is a convex
combination h

h+k

( f(x+h)−f(x)
h

)
+ k

h+k

( f(x)−f(x−k)
k

)
of difference quotients from

the right and from the left, which are in an arbitrary convex neighbourhood of
f ′(x) ∈ [−∞,+∞] provided h and k are sufficiently small.�

All alone I’d worked out such points raised in the text, not omitting at all
articles like §200 in smaller print, indeed these I’d found often more exciting, e.g.,
the preceding §199 containing the beautiful proof of Lebesgue 4 of Weierstrass’s
polynomial approximation. However the initial resolve to proceed to the next
chapter only after resolving all exercises melted with an exasperating exercise
given at the very end of the very first chapter:-

1This all is from unposted note 20 of MGH, but I’d posted asap note 22.
2I.e., preserved by all reflections preserving the ball, i.e., O(n− 1)-invariant.
3Trifling changes here–keep track of h < 0 and 0 < h separately–show it has no unique

infinite derivative either at any point.
4A pencilled note here–of much later vintage, then I had no access to journals–says this

1898 paper was Lebesgue’s first. As Riesz and Sz.-Nagy made abundantly clear to me later,
the idea of Lebesgue measure and integral was born out of a desire to get around nowhere
differentiable continuous functions. More immediately, by the end of §199 it was clear that,
to grasp the general ideas and results of real analysis humble piecewise linear examples suffice,
but of course, one must also draw lots and lots of figures.
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19*. The nth derivative of a function of a function u = ϕ(y), where y = Ψ(x),
may be written in the form Dn

xϕ =
∑

n!
i!j!···k!D

p
yϕ(

Ψ′

1 )i(Ψ
′′

1.2 )
j( Ψ′′′

1.2.3 )
k · · · ( Ψ(ℓ)

1.2...ℓ )
k,

where the sign of summation extends over all the positive integral solutions of
the equation i+ 2j + 3h+ · · ·+ ℓk = n, and where p = i+ j + · · ·+ k.

An inordinate amount of time—I may still have those messy pages—yielded
an unenlightening verification but this pyrrhic victory taught me (more later)
that even in mathematics there is room for this sage precept: “Proceed! and
faith = understanding will come unto you.” Moreover I had skimmed lightly
over even the text of the last three chapters–applications to geometry of plane
curves, skew curves and surfaces–because I had learnt the basics from other
books, but above all because the next volume awaited.

4. Chapters I-V of Goursat, vol. II, revel in the beauties of complex functions
of a complex variable that are differentiable. Over C differentiability is tight,
and tied to two-dimensional heat conduction, using a boundary value solution
of which was found the most striking of all these beauties, Riemann’s theorem
(1851): this is stated in §22 of Ch. I with some nice examples. In the same vein,
any continuous real function on |z| = 1 extends as its real part to a continuous
complex function on |z| ≤ 1, differentiable on |z| < 1:- Let P (x, y) denote the
steady state temperature at any point z = x + iy of the disk with the given
boundary values, then u(x, y) = P (x, y) + i[

∫ (x,y)

(x0,y0)
(∂P∂x dy − ∂P

∂y dx) + C], page
10, gives all such extensions. The line integral is uniquely defined because its
integrand is a closed 1-form, i.e., ∂2P

∂x2 +
∂2P
∂y2 = 0, which steady state temperature

obeys; and ifQ(x, y) denotes the imaginary part of u(x, y), ∂P
∂x = ∂Q

∂y ,
∂P
∂y = −∂Q

∂x

on |z| < 1, which imply complex differentiability.�
Using complex line integrals Cauchy (1825)–Chapter II–uncovered a magical

fact:–the existence of f ′(z) on an open domain of C implies the existence of all
derivatives f (n)(z) and the developability of f(z) in complex power series 5 near
each z0, i.e., the series from Fourier’s treatise (1822) on heat conduction, if we
replace z − z0 by reiθ = r cos θ + ir sin θ.�

This power series developability of a complex differentiable function enables
its smallest germ to spread out, almost on its own, to the maximal connected or
Riemann surface that is its natural domain. These can even go beyond C itself,
for example, all closed orientable surfaces occur thus. On the other hand ‘any
curve whatever of the plane ... under certain hypothesis of a general character
concerning the curve’–Goursat II, § 87 of Ch. IV–is the natural boundary of a
complex differentiable function. This brings us to the genesis of Weierstrass’s
examples, the series

∑
bnza

n of vol. II, § 88:- for the values of a and b considered
in vol.I, §200, it converges for |z| ≤ 1, diverges for |z| > 1, and on |z| = 1 its real
part coincides with the trigonometric series there. This converged uniformly to
a continuous function of θ not differentiable on a dense subset–this is quite easy,
and nowhere differentiability for all these values of a and b was finally shown
by Hardy (1916)–so |z| = 1 is the natural boundary.�

5Around 1966 I had worked out a treatment of these results that avoids integration; not so
successful was a theory of differentiabilty over the quaternions.
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5. Thus in particular that, an infinite sum of sinusoidal waves, each of twice
the frequency but half the amplitude of the previous, is continuous but nowhere
differentiable, was proved long after Weierstrass; but in the interim many had
scooped my 1966 ‘discovery’ that, this is easy if we use a triangular wave; the
earliest apparently Takagi (1901) 6, and this function is nowadays named most
often after him. Maybe, using Fourier series of piecewise linear waves, we can
deduce from such results their sinusoidal counterparts?

Re-reading again after all these years that easy argument in Riesz and Sz.-
Nagy the ‘discovery’ I made this time around was: there are in p-adics analogous
continuous functions that are nowhere differentiable. Surprisingly in all the
books on analysis over these numbers that I browsed–then there was none, now
there are many–there was no mention of this fact at all. So I decided to write up
this exciting story from scratch, i.e., starting from how this curious arithmetic in
my opinion arose naturally from the musings of an imaginative child in primary
school 7; besides I have endeavoured to show–those who have read PG&R will
know why this is important to me–that, there is definitely more than a mere
analogy between the real example and its adic version.

Singh (1935) is king 8 but this nice early survey I recalled only while browsing
Jarnicki and Pflug (2015), from which I also learnt that I’d been scooped again:
Rychlik (1920) gave another example of a continuous function over the p-adics
which is nowhere differentiable, but he did not tie it to a real example 9 and nor
have I looked into this problem so far.

Kowalewski’s Über Bolzanos nichtdifferenzierbare stetige Funktion (1923) is a
joy to read; here’s my translation of this beautiful paper, also it led to an overdue
first paper in German; for more on Bolzano and how his banned Schriften came
out a century later see also the MacTutor website. Mulling further I was led on
to that cute variant of Bolzano’s function, tied to a non-controversial 10 fable
about the tortoise and the hare, in which the two are good friends, and always
tie their races on the prescribed track, even though the rabbit is running always
at twice the speed of his pal!

11/11/24 (to be continued)

6Alas, I couldn’t find this Japanese paper, only a later translation.
7Browsing the relevant first two chapters of Hensel (1908) I got the impression this primary

school arithmetic was known in his neck of the woods by then; even so striking is the use made
of this curiosity in algebraic number theory; also some paragraphs in this book were about
the only ultrametric calculus around for many decades.

8Of these scholarly lectures–delivered in Lucknow!–I’d learnt in the late seventies when one
day I stumbled on Squaring the circle and other monographs by E.W. Hobson et al., including
A.N. Singh’s The theory and construction of non-differentiable functions.

9A 1923 translation of this Czech paper has however an end note on the recent discovery
of Bolzano’s example. As Hykšová, Life and Work of Karel Rychlik (2001) points out, though
his rôle in pushing further Hensel’s ideas in number theory is well-known, this early one-off
paper on p-adic continuous functions came way before the topics of p-adic analysis covered in
books now; apparently it was just forgotten in the folds of time.

10Let me recall that in all versions current among rabbits it is the tortoise who is the villain,
for example in Tricky Tortoise their forefather is enticed into eating too many carrots before
the race, so naturally he feels sleepy midway, etc.; also see A Turtle’s Tale (2022) though its
focus is a much more serious and non-mathematical issue.
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