
Distances and Homeomorphisms

Problem. Characterize continuous alif distances d : U×U → R+ on a convex
bounded open subset U of Rn, i.e., those for which the following is true:

(ℵ) Let f : U → U be any homeomorphism of U which extends by the identity
map of its boundary ∂U . Then, if f is Lipschitz with respect to the distance d,
it is Lipschitz with respect to the Euclidean distance e of U .

Here Lipschitz is short for ‘uniformly bi-Lipschitz’, i.e., the distortion of
distance by the homeomorphism as well as its inverse is bounded globally,
i.e., there is a constant L < ∞ such that d(f(P ), f(Q)) ≤ Ld(P,Q) and
d(f−1(P ), f−1(Q)) ≤ Ld(P,Q) hold for all pair of points P,Q of U .

We’ll also look at some variants of this problem. For example, if the distance
d is such that the Euclidean diameter of d-balls of a bounded radius is arbitrarily
small near ∂U , then a homeomorphism f : U → U extends by the identity map
of ∂U if it is bounded with respect to d, i.e., there is a constant δ < ∞ such
that d(f(P ), P ) ≤ δ for any point P ∈ U ; but, bounded homeomorphisms merit
attention even when they don’t extend by the identity of ∂U .

Convexity of U , i.e., closure with respect to shortest Euclidean path between
pairs of points in it, reduces us to checking that length of small germs of segments
or elements is distorted by at most the factor L :- For, using compactness, we
can subdivide any segment PQ into finitely many such small segments Pi−1Pi

where P0 = P and Pt = Q. So each segment f(Pi−1)f(Pi) is at most L times
longer than Pi−1Pi. Hence the broken line from f(P ) = f(P0) to f(Q) = f(Pt)
formed by these t segments, and so à fortiori the segment f(P )f(Q) of U , is at
most L times longer than PQ.�

We’ll often denote the Euclidean length e(P,Q) of a segment PQ also by
PQ. So the distance axioms for e read: PP = 0, PQ > 0 if P ̸= Q. PQ = QP ,
PQ + QR ≥ PR. Likewise d(P, P ) = 0, d(P,Q) > 0 if P ̸= Q. d(P,Q) =
d(Q,P ), d(P,Q)+d(Q,R) ≥ d(P,R); besides d is continuous which is necessary
and sufficient to ensure that it gives the same topology on U :-

Continuity of d shows any open d-ball of U is e-open. Let C be any closed
e-ball of Rn contained in U . It is e-compact. So C is also compact in the
coarser metric, so Hausdorff, d-topology. So the two topologies coincide on C.
In particular int(C), an open e-ball, is d-open. The result follows because any
e-open subset of U is a union of such open e-balls.�

Our problem hinges on the conversion or comparison ratios d(P,Q)
PQ between

these two ways of measuring separation between pairs of distinct nearby points.
As long as these positive numbers stay well away from 0 and ∞ intuition tells
us all should be hunky-dory, but in case this is not so, the answer will involve
on how these positive numbers approach 0 or ∞.

The one-dimensional case n = 1 of our problem is already very interesting
and reveals almost all its features. So we’ll linger on, and around, this case for
a while to firm up our intuition into something more exact.

1



Now U ⊆ R is an open interval (a, b) where possibly a = −∞ and/or b = ∞.
One might think that continuity would sharpen the triangle inequality of d to
additivity d(P,Q) + d(Q,R) = d(P.R)∀P < Q < R in this case, but this is
seldom true. Indeed for m > 1 the triangle inequality is generally strict for the
following class of natural distances on the interval:-

Any parametrised arc of Rm, i.e., 1− 1 continuous function d : (a, b) → Rm,
defines a continuous distance d(P,Q) = d(P )d(Q) on the interval.

However for m = 1 a distance defined thus is additive. It remains unchanged
if we add a constant or multiply this function by −1, so we can assume d : U → R
strictly increasing and zero at any chosen base point O ∈ U . So d(O,P ) = |d(P )|
and d(P,Q) = d(Q)− d(P ) if P < Q. The conversion ratios become the slopes
d(Q)−d(P )

Q−P of the chords of the graph of this function.�
An orientation preserving homeomorphism f : U → U is also the same as a

strictly increasing continuous function, but with the additional requirement of
surjectivity f(U) = U . Indeed the inverse of any strictly monotone continuous
function is automatically continuous. A strictly decreasing continuous surjective
function, i.e., an orientation reversing homeomorphism of the interval U , has
exactly one fixed point, that is, its graph cuts the diagonal of U×U exactly once.
On the other hand, a strictly increasing homeomorphism can have any closed
subset F ⊆ U as its fixed-point-set {P ∈ U : f(P ) = P}. The open complement
of F is the disjoint union of at most countably many intervals (ak, bk) on each
of which either always f(P ) < P or f(P ) > P .�

Basically because any O ∈ (a, b) can be an ak or bk of some f , an ℵ-distance
d has to be more than just continuous at all points. To get at what the optimum
condition might be let us consider the limits of slope d(Q)−d(P )

Q−P of chords of the
continuous strictly increasing zigzag graph below:-

At each corner between a zig, a segment with a small positive slope m, and a
zag, a segment with a big slope M , this limit is m or M if P and Q approach the
corner from that side. But if no constraint is put any value in [m,M ] can occur
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as a limit. So, at that exceptional point O, it is exactly all values in the interval
[lim infr(m), lim supr(M)] that occur as limits if we constrain (P,Q) to the right
of O. All rays with these slopes constitute that blue forward cone, which can
well be the entire closed first quadrant. Likewise, the yellow backward cone
indicates all limits at O of d(Q)−d(P )

Q−P under the constraint P < Q ≤ O. The
smallest interval containing these one-sided limits, i.e., [lim inf(m), lim sup(M)],
gives all unconstrained limits of slope, and can be visualized by a two-sided cone
(not drawn) of all lines through O with these slopes.

The darker forward subcone shows all right derivatives of d at O, i.e., limits
of slope under the constraint O = P < Q which is strictly tighter than ‘(P,Q) to
the right of O’. The biggest and smallest of these, the right Dini derivatives of
d, are the slopes of the two lines on which all zigzag corners to the right of O lie.
On the other hand to the left of O the zigzag corners lie on two curves making a
cusp at O, so d is left differentiable, its sole left derivative at O being the slope of
the common tangent to the two curves at this cusp. Finally, the smallest interval
containing all right and left derivatives at O comprises all neutral derivatives of
d at O, i.e., limits of slope taken under the constraint O ∈ [P,Q], and can be
visualized as a two-sided closed sub-cone.�

These definitions apply more generally, e.g., for any function d : (a, b) → R,
if d(Q)−d(P )

Q−P , O ∈ [P,Q] is arbitrarily close to ℓ infinitely often in a sufficiently
small neighbourhood of O, then ℓ is a neutral derivative of d at O, and if there
is a unique such ℓ then d is differentiable at O:- This is equivalent to the usual
definition of differentiability of d at O because d(Q)−d(P )

Q−P , O ∈ (P,Q) is a convex
linear combination of d(O)−d(P )

O−P and d(Q)−d(O)
Q−O .�

Examples. Consider any doubly infinite increasing sequence Pi ∈ (a, b), i ∈ Z
with no limit point in (a, b). The fixed point free homeomorphism f which
maps each segment PiPi+1 linearly on Pi+1Pi+2 is (uniformly bi-)Lipschitz with
respect to the Euclidean distance if and only if both Pi+1Pi+2

PiPi+1
and PiPi+1

Pi+1Pi+2
are

bounded. When the first ratio is unbounded the distortion of this distance by
f is unbounded near a; while if the second ratio is unbounded the distortion of
distance by its inverse f−1 is unbounded near b.

However f is bounded and Lipschitz with respect to the additive distance
defined by any d : (a, b) → R which increases linearly over each PiPi+1 such
that d(Pi+2)−d(Pi+1)

d(Pi+1)−d(Pi)
and its reciprocal are both bounded. So any such d is not

an alif or ℵ-distance on the interval. For instance let d increase by the same
amount say 1 on each segment PiPi+1, then the image of d is all of R; or take
d(P0) = 0 and d increasing linearly by 1/2|i| on each segment PiPi+1, then the
image of d is only (−1, 2); etc. This last enables similar examples focused on
any nonempty subinterval (ak, bk) of (a, b).

We note d(Pi+2)−d(Pi+1)
d(Pi+1)−d(Pi)

bounded and PiPi+1

Pi+1Pi+2
unbounded implies that their

product d(Pi+2)−d(Pi+1)
d(Pi+1)−d(Pi)

× PiPi+1

Pi+1Pi+2
is unbounded. Therefore, for any such d

either the ratio of successive slopes d(Pi+2)−d(Pi+1)
Pi+1Pi+2

÷ d(Pi+1)−d(Pi)
PiPi+1

or its reciprocal
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d(Pi+1)−d(Pi)
PiPi+1

÷ d(Pi+2)−d(Pi+1)
Pi+1Pi+2

is unbounded.�

This suggests that maybe, in any dimension n ≥ 1, for d to be an alif distance
the local condition aira below is necessary and sufficient.
(A) The ratio d(P,Q)

PQ ÷ d(Q,R)
QR of conversion ratios is bounded for all nearby

adjacent pairs of elements ∠PQR := (PQ,QR); where ‘nearby’ means not only
at all Q in a small neighbourhood of any O ∈ U , but also at all Q near any
point O of ∂U . Thus this condition like aliph is also not symmetric in the two
metrics: the distance d is defined only on U and may blow up near ∂U .

Before confirmng our hunch, we return to the case n = 1 – when bends ∠PQR
are necessarily one small segment PQ followed by another small segment QR of
the same straight line – and look at some more

Examples (contd). The infinite series Σ1/2n and Σ1/n2 are both convergent,
the second converging much more slowly (it fails the ratio test). So we can
choose that doubly infinite increasing sequence Pi, i ∈ Z of points of (a, b) to be
such that near a the segments PiPi+1 have length alternately 2i and 1/i2. So
half the time Pi+1Pi+2

PiPi+1
is becoming arbitrarily big and the other half arbitrarily

small as i → −∞. This because 2n/n2 → ∞ as n → ∞. Hence the distortion of
Euclidean distance by the homeomorphism f of (a, b) which maps each PiPi+1

linearly onto Pi+1Pi+2 is unbounded near a. On the other hand the distortion
of the additive distance d which increases linearly over every PiPi+1 by 1/i2 is
bounded by 2. So d is not an alif distance:

Note the graph of this non-aliph additive distance is zigzag, with zags all of
slope 1 near a, while the slopes of the zigs decreases to zero. So its forward blue
cone at a consists of all rays having slopes in [m,M ] where m = 0,M = 1. Also,
one can check that no ray with positive slope cuts it again sufficiently close to
a, so d is right differentiable at a with right derivative zero.

Likewise the distortion of a d increasing linearly over every PiPi+1 by 2i is
bounded by 2, so it too is not alif, but its forward blue cone at a consists of all
rays having slopes m = 1 through M = ∞, i.e., the y-axis.

The condition (A) can also fail thus: at all points of U the forward and
backward cones are bounded away from the axes, but as we approach a boundary
point, the ratio M/m → ∞. Such a distance d is also not alif.�

Theorem. A continuous distance d on U is alif iff it is aira.

Proof. We are given a homeomorphism f of U identity on ∂U such that
d(f(P ),f(Q)))

d(P,Q) and its reciprocal are uniformly bounded by a finite constant for
all distinct pairs {P,Q} of points of U . Indeed we’ll need this condition only for
pairs that are sufficiently close to each other in the Euclidean distance of the
convex bounded open subset U of Rn. (More generally, if U ⊂ Rn is a compact
manifold-with-boundary the same result holds if we use minimum arc length in
U , on small segments of U this coincides with Euclidean distance.)

Since U is compact our job reduces to showing under condition (A) on d
that f is Lipschitz with respect to the Euclidean distance near any O ∈ U . If
O ∈ U is not a fixed point of f we can compose with a quasi d-isometry of

4



U , identity on ∂U , which brings f(O) back to O. Say, a diffeomorphism of
U onto itself, identity outside a neighbourhood of Of(O), which translates a
neighbourhood of f(O) back along this segment to one of O. (More generally,
take any arc in U from f(O) to O tangent to an apt smooth vector field zero
outside a neighbourhood of this arc, to obtain a diffeomorphism of U onto itself,
identity outside this neighbourhood, which translates a neighbourhood of f(O)
along this arc to one of O.) Its first derivatives being bounded in distance d as
well, this gives us the required quasi-isometry. So we can assume without loss
of generality that O is a fixed point of f . In case O is in the interior of the
closed subset F ⊇ ∂U of all fixed points of f there is nothing to do. Otherwise,
if f were not Lipschitz in a neighbourhood of O, it would follow, using the
fact that f is Lipschitz here with respect to d, that near O there are points
P,Q = f(P ), R = f(Q) for which d(P,Q)

PQ ÷ d(Q,R)
QR or its reciprocal is arbitrarily

big, contradicting condition (A).
The other direction follows because otherwise, as in above examples, we can

find a small arc ÕA emanating strictly away from any O ∈ U at which d is not
aira, together with a non-Lipschitz homeomorphism f of ÕA keeping O and A
fixed, but which is Lipschitz with respect to the restriction of d. Further we can,
e.g., by rotating the arc if O ∈ U , extend f to a homeomorphism of U keeping
∂U fixed. (We note that this arc ÕA can be very wavy: for example, if d is
smooth, and doesn’t grow too steeply if we approach the boundary normally,
then aira can fail only for an O ∈ ∂U , and that only if—so this can happen only
for n ≥ 2—we approach O along a non-normal arc.)�

The first letter of all Semitic scripts, e.g., Hebrew and Arabic, as well as of
Shahmukhi, the other main script in which Punjabi is written, is called alif. It
is equivalent to the second letter aira A of the Gurmukhi alphabet. After HGH,
the case, hyperbolic distance on an open ball, was discussed in appendix alif
(ℵ) of Siebenmann and Sullivan’s On Complexes that are Lipschitz Manifolds
(CLM), from the same 1977 conference. Note 22 cooked a whole lot, for example
the distances of Notes 12 and 14 are not alif. The thunch that property alif is
equivalent to property aira belongs to the on-going salvage operation underway
since then … However in hindsight (A) was all but there in Note 13 where it is
observed that the ratio of slopes si+1

si
should be bounded. Notes 12 and 14 failed

to take into account that, for n ≥ 2, when slopes are in transverse directions,
this ratio is not bounded for those distances either.

K. S. Sarkaria

P.S.– More generally an A-distance on Mn satisfies d(P,Q)
PQ ÷ d(Q,R)

QR bounded
in suitable local coordinates which we’ll call A-structure. A Riemannian metric
implies a smooth structure, and Steenrod showed any smooth manifold admits
one. Likewise, anA-manifold admits anA-distance, which, with an SO(n) worth
of bad homeomorphisms, Note 22, might help understand the obstruction to an
A-structure if n = 4. Also, pertinent here is his remark that we “must live with
disorganized facts imbedded in a sea of mud” till light dawns …
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