ADDENDUM TO MY PAPER "ON COLORING MANIFOLDS"

BY

K. S. SARKARIA

An important paper by Grünbaum [1], which had escaped my attention until now, contains the following theorem: If \(m \geq 2 \) then one can assign \(6(m - 1) \) colors to the \((m - 2)\)-simplices of any simplicial complex imbedded in \(\mathbb{R}^m \) in such a way that any two \((m - 2)\)-simplices incident to the same \((m - 1)\)-simplex have different colors. A fortiori, this implies the finiteness of the numbers \(\chi_{m-3}(S^m) \) of [2].

It is easily seen that Theorems 1 and 2 of [2] are equivalent to the following.

Theorem A. If \(X \) is any closed \(m \)-dimensional pseudomanifold \((m \geq 2)\), then

\[
\chi_{m-3}(X) \leq \left\{ \frac{m(m + 1)}{m - 1} [1 + b_{m-4}(X; \mathbb{Z}_2)] \right\}.
\]

Further if \(K \) is any subcomplex of a triangulation of \(X \) and contains at least one \((m - 2)\)-simplex, then

\[
\frac{m - 1}{m + 1} \alpha_{m-3}(K) \leq \alpha_{m-2}(K) + b_{m-4}(X; \mathbb{Z}_2) - 1.
\]

We will now use the ideas of Grünbaum [1] to show that this theorem can be significantly improved when the hypotheses are strengthened somewhat.

Theorem B. If \(X \) is any closed triangulable manifold \((m \geq 3)\), then \(\chi_{m-3}(X) \leq 6 \). Further if \(K \) is any subcomplex of a triangulation of \(X \) and contains at least one \((m - 2)\)-simplex, then \(m \alpha_{m-3}(K) < 6 \alpha_{m-3}(K) \).

Proof. The first part will follow from the second (as in the proof of Theorem 2 of [2], for example). Let \(K \) be a subcomplex of a triangulation \(L \) of \(X \) and let \(\sigma_1, \sigma_2, \ldots, \sigma_t \) be the \((m - 3)\)-simplices of \(K \) which are incident to at least one \((m - 2)\)-simplex of \(K \). Since \(X \) is an \(m \)-manifold \((m \geq 3)\), \(\text{Lk}_i \sigma_i \), \(1 \leq i \leq t \), is a triangulation of the 2-sphere \(S^2 \). Further \(\text{Lk}_i \sigma_i \), \(1 \leq i \leq t \), is a subcomplex of \(\text{Lk}_i \sigma \) and contains at least one vertex.

Received September 9, 1981.

© 1981 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America
Applying the case \(m = 2 \) of Theorem A (or Lemma 1 of [1]) one gets
\[
\alpha_i(L_k\tau_i) \leq 3 \alpha_0(L_k\tau_i) - 3, \quad 1 \leq i \leq t.
\]
Adding these inequalities one has
\[
\left(\frac{m}{m - 2} \right) \alpha_{m-1}(K) \leq (m - 1) \alpha_{m-2}(K) - 3t
\]
which implies \(m \alpha_{m-1}(K) \leq 6 \alpha_{m-2}(K) \).

Thus the "finiteness theorem" stated in the introduction of [2] can be improved to the above "six color theorem"; however the above proof does not generalize to pseudomanifolds \(X \).

For any compact triangulable space \(X \) let us denote by \(Ch_i(X) \) the least number of colors which suffice to label the \(i \)-simplices of any triangulation of \(X \) in such a way that distinct faces of an \((i + 1)\)-simplex are assigned distinct labels. It is clear that \(Ch(X) = Ch_0(X) \). We can use Grünbaum's trick of using "weight functions" (see [1]) to supplement Theorem B with the further assertion that for any closed manifold \(X \) of dimension \(m \geq 3 \), \(Ch_{m-3}(X) \leq 6(m - 1) \). The same trick and Theorem A can be used to get upper bounds for \(Ch_{m-3}(X) \) when \(X \) is an \(m \)-dimensional pseudomanifold.

Further results and conjectures. We have proved that if \(X \) is a compact triangulable space with dimension greater than or equal to \(2t + 3 \), then \(Ch(X) = \infty \). Another result of some interest is that \(Ch_{m-1}(X) = 2 \) whenever \(X \) is a closed manifold with dimension \(m \geq 2 \). We hope to give elsewhere a proof of the fact that \(Ch_i(X) \) is finite whenever \(X \) is a closed manifold with dimension less than or equal to \(2i + 2 \). In view of Theorem B above it seems likely that the number \(Ch_{m-3}(X) \) is the same for all closed \(m \)-dimensional manifolds \(X \) with \(m \geq 3 \); quite possibly the numbers \(Ch_{m-2}(M^m) \) are the only ones which reflect the global topology of a closed manifold.

If \(X \) is a closed triangulable \(m \)-manifold \((m \geq 3) \), then \(Ch_{m-3}(X) \leq 4 \); this improvement of the first part of Theorem B can be obtained by using the four color theorem.

Added in proof. For more discussion regarding results mentioned above see [3] and [4].

References

Panjab University
Chandigarh, India